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Preliminaries

Hollenbeck Gang Activity

@ Hollenbeck has an area of
approximately 15.2 miles.

B
Los Angeles’
<

@ In this area, 31 violent gangs
reside.

@ Hollenbeck is one of the top
three most violent LA
policing regions.

@ Gang violence in this region

has existed since before
WWII.
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Preliminaries

Hollenbeck Gang Activity

The LAPD has provided an Excel database of non-criminal stops
they have made in the Hollenbeck area. The data includes:

@ time of stop

@ location (gang territory and e
coordinates) 158
e gang affiliation i
1.86
@ sex
1845
@ age 184
@ ethnicity e
183
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Preliminaries

@ Use clustering techniques to predict unknown gang affiliations.

@ Detect other social structures that may not be captured by
gang affiliation.
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Preliminaries

Graph Models

@ Convert individuals into nodes.
o Edge weights indicate similarity.

@ Unfortunately, data is sparse.
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Preliminaries

Choosing a Measure of Similarity

@ A function of Euclidean distance
@ Dot product of feature vector

o Gang territory
o Individuals and their gang associations
e Individual to individual interactions
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Preliminaries

tual Gang Clusters
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Attempted Solutions and Results

K-means algorithm

Algorithm

Choose number of partitions.

Compute centroids.
Shift centers to the centroid of their affiliated points.

Repeat until equilibrium is achieved.

The K-means algorithm only accounts for location. We hope to
utilize more of the data.
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Attempted Solutions and Results

Results: K-means Approach
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Attempted Solutions and Results

A Metric for Cluster Evaluation

@ We define purity to be

purity (2, C) Z max;|wi N ¢
where Q = {w1, - ,wk} are the clusters and
C ={c1, -, ¢} are the actual classes.

@ Another measure we used was Adjusted Mutual
Information which may be more appropriate since our gangs
vary significantly in size.
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Attempted Solutions and Results

Results: K-means Approach

Purity =~ 0.4 and AMI = 0.4
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Attempted Solutions and Results

Modularity Maximization

@ Modularity compares the number of edges within a cluster to
the number expected
@ Maximize modularity.

@ We can calculate the change in modularity at each step and
stop when the change is not positive

[M.J. Newman, 2006]
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Attempted Solutions and Results

Results: Modularity Maximization
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Attempted Solutions and Results

Convergence of Iterated Correlations (CONCOR)

e Compute correlations of entries to the mean of rows/columns

@ Continue to calculate the correlations of the correlation matrix
until we are left with 4+1 and —1.

@ The method is repeated on each cluster to achieve a finer
partition.

[Wasserman, 1994]
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Attempted Solutions and Results

Results: CONCOR

Purity ~ 0.5 and AMI =~ 0.46.
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Recommended Solution and Results

Spectral Clustering

o Create a matrix of eigenvectors of the Adjacency matrix.

@ The eigenvectors capture the axes which contain the most
variation in the data.

@ Run k-means algorithm on new space.
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Eigenvalues
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Recommended Solution and Results

Eigenvector Plots: Distance Only
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Recommended Solution and Results

Eigenvector Plots: Social Information Only
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Recommended Solution and Results

Where to go from here?

@ The geographic data provides no insights.

@ The social data is so sparse that its eigenvectors are
completely useless alone.

@ We decided to combine the two adjacency matrices,
aA+ (1 — a)B, where a is a weighting parameter.
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Eigenvector Plots: Combined
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Recommended Solution and Results

Clustering Results
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Clustering Results
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Clustering Results
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Recommended Solution and Results

Results: Spectral Approach

Purity ~ .7 and AMI =~ .65
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Artificial Data

Artificial Data

Hollenbeck Degree Distribution
SON T T T T T T

Average Degree: | 426
Fercent in Cormmunity:
0.693
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Artificial Data

Artificial Data

Inputs:

@ Number of people
Number of communities
Gang multiplier
Threshold

Glx, ) = Gagi (1+ Méy)

Geographical Threshold Example Degree Distribution

Average Degree: 1,895
Percent in Communicy: 0.758

0 2 03 4 5 6 7 8 9 10 1l 12 13 [N Masuda 2005]
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Artificial Data

Artificial Data

Inputs:
@ Number of people
@ Number of gangs
@ Probability within gangs
@ Probability outside gangs

Modified Erdos Renyi Example Degree Distribution
400 . . . . . - .

Average Degree: 1,408

200 Percent in Cormmunity: 0.757

100

[A. Lancichinetti, 2008]



Artificial Data

Artificial Data

Inputs:
@ Number of people
@ Number of gangs
o Average degree
o

Mixing parameter

Power Law Example Degree Distribution
800

Average Degrea: 1.5
Percentin Corrmunity:
0723

400

200

[E.N. Gilbert, 1959]
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Artificial Data

Artificial Data

Inputs:

Number of people
Number of gangs
Average degree
Mixing parameter

Interior

Exterior

==

Commbined

con 08

Ao ne
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Artificial Data

Artificial Data

Distribution of Distances to Gang Centers
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Future Work

Future Work

@ Matrix Completion and Link Prediction
@ Robustness of Algorithms
@ Artificial Testing Data
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