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Abstract

In Hollenbeck, a gang-dominated region of Los Angeles, gang activity has been monitored by the
LAPD. One manner has been in the form of non-criminal stops. We propose a spectral clustering algo-
rithm to predict gang affiliation from the information obtained from these stops. Despite the sparseness
of data, the combination of geography and the record of individuals involved in a stop reveals the un-
derlying gang structure and higher order structures (collaboration or rivalry). Having obtained positive
results on the real Hollenbeck data, we then develop methods to create gang simulations that will further
our understanding of this algorithm and the situation in Hollenbeck.

1 Introduction

Gang violence is a problem that plagues Los Angeles and many other large cities. The social structures in
gang territories can transcend individual gangs to include gang cooperation and gang rivalries. There have
been efforts to detect these social constructs that rely on criminal stops (see [11], [12], and [13]). We intend
to demonstrate that such structure can be extracted from non-criminal stops as well

The rest of the paper follows the following structure: Sections 1.1 and 1.2 introduce Hollenbeck, the area
of study, and the data we use to identify social structures in this area. Section 1.3 defines the matrices we
use, Section 2 describes the methods we used to identify social structures, Section 3 describes the various
methods associated with creating artificial data, and Section 4 describes the results and analysis.

1.1 Hollenbeck

Hollenbeck is one of the policing regions of the Los Angeles Police Department (LAPD). It is located east
of Downtown Los Angeles with a population of about 200,000 people in a 15.2 square mile area. According
to the LAPD, Hollenbeck is home to 31 known gangs with territories covering almost all of Hollenbeck and
is among the top three regions in violent crimes, with homicide rates higher than both Los Angeles and the
United States since the early 1990s. LAPD crime data from the years 2004-2006 show that the increase in
crime rate was the second highest among all areas the LAPD police [11].
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Figure 1: Map of Hollenbeck with gang territories highlighted (courtesy of CNN).

Hollenbeck is bordered by the Los Angeles River to the west, the Pasadena Freeway to the north, Vernon
to the south, Pasadena to the northeast, and an unincorporated area of East Los Angeles to the east.
According to [11] these natural boundaries serve to limit interactions with other gangs from neighboring
areas. Although other gangs in the region might be a cause for concern, there is little interaction between
Hollenbeck gangs and those in Pasadena and East Los Angeles. These natural boundaries allow for most of
the interactions between gangs to be wholly contained in Hollenbeck, making it a prime location to study.
Figure 1 shows the region of Hollenbeck as well as the gang territories.

1.2 Data

The LAPD, with help from UCLA’s anthropology department and UCI’s criminology department, provided
a list of gang members who were involved in strictly non-criminal stops in 2009. This list was obtained
by the LAPD patrolling an area and stopping suspected gang members . For each non-criminal incident,
we have the following information about each individual: age, sex, ethnicity, gang affiliation, an incident
identification number, number of incidents in which the individual as stopped, time, date, and location
of each incident, gang territory (including unclaimed territory) in which they were stopped, and whom (if
anyone) the individual was stopped with. For individuals involved in multiple incidents, we define each
individual’s central location to be the average location of all incidents. Figure 2 shows the average location
of each individual as well as their gang affiliation. As it can be seen in Figure 2 most of the gangs have their
members localized in particular areas, while few gangs have members that are spread throughout the area.
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Figure 2: Plot of central location of each of the 748 individuals with points colored by gang affiliation.

To have a ground truth available, we use only some of the information the LAPD has provided. The
data contains 1198 individuals, of which only 832 are known Hollenbeck gang members. After removing
individuals without an incident identification number or location, we are left with 748 gang members. For
the purpose of our project, we will consider only the following information about those 748 individuals: gang
affiliation, average location of incident(s), gang territory they were stopped in, and with whom they were
stopped with.

1.3 Graph Theory

Graph theory provides a way to study a social network mathematically. By assigning a vertex to each
individual and edges as weighted or unweighted connections between two individuals we can use graph
theory to define a matrix to represent the social information.

We use different graphs of the form G(V,E) to represent our data. The vertex set V = {v1, v2, . . . , vn}
where each vi represents an individual. By varying the edge set E in each of the different graphs, we can
take into account different sets of information. We use matrices to represent these graphs in the following
way:

• An unweighted adjacency matrix consisting only of social information where if two individuals vi and
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vj were stopped together.

Aij =

{
1 if vi and vj are connected and vi 6= vj ,

0 otherwise.
(1.1)

• A position matrix consisting of the average location of each individual:

Pi =


...

...
xi yi
...

...

 . (1.2)

• A weighted affinity matrix that combines both social and geographical information:

Wij = α exp(
< fi, fj >

2

σ1
) + (1− α) exp(−d(vi, vj)

2

σ2
), (1.3)

where fi is a feature vector for vertex vi derived from the unweighted adjacency matrix (1.1). fi is the
i-th row of I +A, where I is the identity matrix and A is given in (1.1).

< fi, fj > is the dot product between two feature vectors and d(vi, vj) is the usual Euclidean distance
between the central locations. α is a parameter that weighs the contributions of the social and geo-
graphical information to W (α = 1 means we are only using social information while α = 0 means
only geographical information). In order to account for the difference in scale, both feature vectors
and distance information are normalized to have unit length.

• A matrix that contains both social and geographical information separately:

M = [P |wA] (1.4)

where P is the n × 2 position matrix in (1.2), A is the n × n adjacency matrix in (1.1), and w is a
parameter that weighs A.

Note that for the adjacency matrix (1.1) the diagonal elements, which represent self-connections, are
0, while the weighted affinity matrix (1.3) will have weights on the diagonal. When using both social and
geographical information, we will refer to them as “mixed.”

2 Methods

We compare four methods for clustering our data set. We give a brief description of each technique and its
application. The results of these methods can be seen in Section 4.

2.1 k-means

k-means is one of the simplest unsupervised learning algorithms that attempt to put n data points embedded
in Rn into k clusters. The process is fairly simple, as outlined in the following algorithm [6]:

Algorithm 2.1. k-means clustering algorithm

1. Randomly assign k points to be the initial location of cluster centers (centroids).

2. Assign each point to a cluster based on the nearest centroid.

3. Move each of the k centroids to the center of mass of all points in the corresponding cluster.

4



4. Repeat steps 2 and 3 until the centroids no longer move.

We applied k-means to the position matrix in (1.2) and the mixed matrix in (1.4). Although k-means is
very simple, for the majority of social networks, as well as in our case, k-means by itself will not do a good
job (see Section 2.4).

2.2 k-medoids

The difference between k-means and k-medoids is that k-medoids initializes central points (see Algorithm
2.2 step 2) as centroids rather than assigning them randomly. We use the following algorithm proposed by
[10].

Algorithm 2.2. k-medoids algorithm

1. Calculate the distance between each pair of points.

2. Calculate v =
∑
i

d(i,j)∑
l d(i,l)

for each point and choose the k smallest values as the initial cluster centroids.

3. Each point is assigned to the nearest cluster centroid.

4. For each cluster, the vertex with the minimum total distance to all other points in the cluster is chosen
as the new centroid.

5. Repeat steps 3 and 4 until equilibrium is reached.

We applied k-medoids to the position matrix in (1.2).

2.3 CONCOR

The convergence of iterated correlations (CONCOR) is an algorithm that calculates the Pearson product-
moment correlation coefficients among rows (or column) of an input matrix by comparing the value of an
entry to the mean value of the row (or column) in which it occurs. This results in a new single matrix of
calculated correlation coefficients, which represent the structural similarity between vertices. With this new
matrix, the process is repeated until all the entries of the matrix are +1 or −1, with each number determining
a group. The process is then repeated on each subgroup until the number of partitions desired is achieved.
See [16] for a more detailed description of the process and the correlation coefficients associated with it.

We applied CONCOR to the affinity matrix in (1.3).

2.4 Spectral Graph Clustering

Spectral clustering is one of the more popular modern clustering algorithms. Rather than describing spectral
clustering in great detail, we refer the reader to [15] for a complete analysis of the theory behind spectral
clustering. We will be using a modified version of the algorithm proposed by [9]:

Algorithm 2.3. Modified spectral clustering algorithm
Given a set of vertices V = {v1, v2, . . . , vn} that we want to cluster into k groups:

1. Form an affinity matrix W ∈ Rn×n as defined in (1.3).

2. Normalize each row of W to have unit length.

3. Find x1, x2, . . . , xk, the m largest eigenvectors of W , and form the matrix X = [x1|x2| . . . |xm] ∈ Rn×m.

4. Treat each row of X as a point in Rm and cluster them into k clusters using k-means (or other methods,
see Section 6).
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5. Assign the original vertex vi to cluster j if and only if row i of the matrix X was assigned to cluster j.

The difference between spectral clustering and k-means is that k-means can only create clusters by using
linear separation. We illustrate this idea with the example in Figure 3:

Figure 3: Two concentric circles plot and result of embedding the two eigenvectors into an R2 eigenspace
[9].

If k-means were to be used on this figure, it would cluster the points into two halves since it is impossible
to separate the inner circle from the outer circle linearly. By applying spectral clustering and embedding the
data points in the span of the two eigenvectors, we see that it creates two linearly separable clusters that
k-means can identify. Since gang territories have various shapes and structures, spectral clustering allows us
to take those shapes into consideration.

2.4.1 Eigenvalues and eigenvectors

For calculating the eigenvalues and eigenvectors, we use Matlab’s eig function [8]. The first eigenvalue
calculated from the affinity matrix (1.3) is 1 and the corresponding eigenvector a constant vector. A cluster
based only on this eigenvector puts all the vertices in one cluster. So we rely on the other non-trivial
eigenvectors for information about the clusters. We illustrate the method with the following example in
Figure 4:
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(a) (b)

(c) (d)

Figure 4: (a) shows a graph of three distinct clusters. (b)-(d) show a plot of the first three eigenvectors.

As stated before, the first eigenvector in Figure 4b is constant and gives no information about the
structure of the data set. In Figure 4c the large gaps between the values of the eigenvectors separate the
points into the three clusters that are shown in Figure 4a.

For the Hollenbeck data using either only geographic information (α = 0) or social information (α = 1)
versus using a combination of both (α ∈ (0, 1)), the eigenvectors show different information. To avoid
the difficulty of visualizing points in Rn, we apply a color scale to visualize the value of each entry in the
eigenvector (see Figure 5) and map it to its corresponding individual. Each individual is then plotted with
their average location and color.
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(a)

(b)

(c)

Figure 5: Plots of the central location of each individual colored by second eigenvector for three cases. (a)
Geography only (α = 0), (b) social only (α = 1), (c) mixed (α = 0.5).
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Figure 5 shows the results of color coding each vertex by the value of its corresponding entry in the
second eigenvector. By looking at the dark blue or dark red areas we see that Figure 5a shows the results
based only on geographical information leading to a north-south gradient and Figure 5b uses only social data
leading to very little structure. Figure 5c uses both types of data and shows some of the group structure.
The analysis of these results is given in Section 4.2.

Ideally, when groups are infinitely far apart, one would expect k eigenvalues corresponding to k clusters
because the rank of the affinity matrix would be k. In this ideal situation, gang members of Hollenbeck do
not interact with members outside their own gang and do not step outside the boundaries of their territory.
In this case, we expect 31 eigenvalues to represent the 31 gangs. Although we do have an underlying idea
as to what the structure of Hollenbeck looks like (the 31 gangs and their territories), we do not know if 31
clusters can correctly capture the social structure of Hollenbeck, and hence we cannot rely on exactly 31
eigenvectors. Instead we use different numbers of eigenvectors to find the best results. Further analysis on
the eigenvectors is given in Section 4.2.

3 Artificial Data

As the exact relationship between the known gang affiliations and the “proper” clustering of the Hollenbeck
data is an open question, it is important to test the success of clustering algorithms in other ways. One way
to develop some ground truth is to generate synthetic data with structural properties that can be controlled.
Running the clustering algorithms on that synthetic data can then reveal more about what characteristics
of the data have the strongest effect on algorithm performance and how robust the algorithms are in dealing
with parameter sensitivity and missing information.

We created an artificial gang database where each data point is a person with three main characteris-
tics: gang affiliation, inter-personal connections, and geographical location. Before creating this data, it is
important to consider the distributions of these characteristics in the Hollenbeck data. As the box plot in
Figure 6a shows, the majority of the gangs have between 10 and 40 members represented in the data set,
with a maximum of 93 and a minimum of 2.

The degree distribution roughly follows a power law, with an estimated exponent of 2.77 and a goodness-
of-fit p-value of 0.009 using the methods proposed by [3]. Because the p-value is low, it may be possible to
find a better fit for the data. The mean degree is 1.426 and 69.3 percent of connections in the data set are
between two people in the same gang. The mean distance from a person to the average location of people in
their gang (called the “gang center” in Figure 6c) is 3,312 feet with a standard deviation of 3,297 feet. The
mean distance between two gang centers is 9,334 feet with a standard deviation of 5,982 feet. These are the
main characteristics the artificial data allows to experiment with.
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(a) (b)

(c) (d)

Figure 6: Histograms of various distributions.

We used three different methods to generate synthetic graphs, a power law method, a modification to
the Erdős-Rényi model, and geographical thresholding, and we used one model to generate spatial data.

3.1 Power law graph

One common feature of real-world networks is a power law degree distribution [2]. There are several known
methods for generating random power law graphs ([1] and [5]). The method we used is most similar to the
one proposed by [5]. Using N for the number of nodes, m for the number of communities, k for the desired
average degree, µ for the mixing parameter, and γ and β for the exponents of the degree and community
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size distributions, respectively, the method is described as follows:

Algorithm 3.1. Power law algorithm

1. Each community size is drawn from a Pareto distribution (a power law probability distribution) with

scale 1 and shape β. The community sizes are then multiplied by N(β−1)
mβ and rounded to the nearest

integer so that the mean size is approximately N
m and the sum is approximately N . If the sum is

greater than N , each community size is reduced by one. If the sum is less than N , a randomly chosen
community’s size is increased by one. This adjustment continues until the sum of the community sizes
is exactly N .

2. Each degree is drawn from a Pareto distribution with scale 1 and shape γ, and we subtract 1 from
each degree to account for the possibility of people with no connections. Each degree is then multiplied
by 2k/s, with s the original mean of the distribution, and rounded to the nearest integer so that the
mean degree is approximately 2k. Each degree is then multiplied by 1−µ and µ to get an interior and
exterior degree respectively for each person. It is possible that a person will have an interior degree
larger than the biggest community size. In that case, the process starts over from scratch at step 1.

3. Each person is randomly assigned to a community. A proposed community is chosen uniformly. If the
community already has its allotted number of members or the size of the community is smaller than
the interior degree of the person, a new proposed community is drawn.

4. With all communities assigned, connections are made between people. For each person, other people
in their community are uniformly chosen to connect with until the interior degree is satisfied. If the
chosen person has already satisfied their interior degree, the connection is discarded. This process also
stops for each person if there are no new connections after 10,000 iterations. A similar process is used
to generate connections between people in different communities.

5. With all the connections created, the actual degree of each individual is calculated. Edges are then
randomly discarded until the average degree reaches k.

Though degrees are adjusted after the power law is generated, the degree distribution maintains its power
law shape. An example is given in Figure 7 for γ = 3. The distribution of community sizes is also shown.
This method does not create very small communities as seen in the Hollenbeck data. We still think this is
accurate because we suspect that the outliers in the Hollenbeck data are a result of sampling methods and
lesser gang activity rather than actual anomalously small gangs.
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Figure 8: Power law convergence time.

(a) (b)

Figure 7: Power law example degree distribution

Convergence of the algorithm is fast for population sizes comparable to the Hollenbeck data. As can
be seen from Figure 8, the average degree chosen also has a small effect on the time. Much of the time to
convergence takes place in step 5 of Algorithm 3.1. The algorithm can be tweaked to reduce this, but it
would also lead to a greater chance of an average degree of less than the input k. The algorithm also takes
significantly longer to converge if a high enough average degree is chosen so that it cannot generate a power
law with a maximum interior degree less than the largest community.
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3.2 Modified Erdős-Rényi method

One of the most well known random graph models is the Erdős-Rényi model with n vertices and a fixed
probability p of having an edge between each vertex [4]. To instead create communities in the graph,
we modify the model by using a separate probability for edges within communities and edges outside of
communities. As a result, the degree of each vertex follows the sum of two binomial random variables. As
the degrees are neither independent nor identically distributed, the expected overall distribution is difficult
to calculate, but an example is shown in Figure 9 for interior probability 0.03 and exterior probability 0.0003.
Compared to the Hollenbeck and power law graphs, the modified Erdős-Rényi (MER) graphs have many
fewer vertices with degree 0, even with a similar average degree.

Figure 9: Degree distribution of Modified Erdős-Rényi graph.

Unlike with power law graphs, if a user has a specific average degree and percent within community in
mind, the parameter choice for MER graphs is not obvious, but appropriate choices can be estimated using
the following equations:

r =

(
N
2

)
−m

(
N/m
2

)
(1− µ)m

(
N/m
2

) , (3.1)

p1 =
Na

2(m
(
N/m
2

)
+ 1

r (
(
N
2

)
−m

(
N/m
2

)
))
, (3.2)

p2 =
p1
r
, (3.3)

where a is the average degree.
Creating MER graphs is even faster than creating power law graphs (compare Figures 8 and 10). The

only parameter choice that affects the run-time is the number of people created.

3.3 Geographical Threshold Graph

Unlike the previous two methods, geographical threshold graphs (GTG) [7] use the spatial location of each
person when generating the random graph, so we must first use the spatial generator (discussed in 3.4. Once
we do have spatial data, the process is as follows:

Algorithm 3.2. Geographical thresholding
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Figure 10: MER convergence time.

1. Each vertex is uniformly assigned a real weight η from 0 to 5.

2. For each pair of vertices x and y, the function G(x, y) is calculated. If G(x, y) is greater than the
threshold η, there is an edge between the two vertices.

Many functions can be used in place of G to give different degree distributions and percentages of edges
within communities. G returns a degree distribution that follows a power law, as shown in Figure 11.

Figure 11: Degree distribution of GTG.

Both the degree distribution and the percentage of edges within communities are heavily dependent on
how the spatial coordinates are generated in addition to the choice of parameters for the graph generation.
As a result, predicting the average degree based simply on the parameters chosen isn’t easy, and it may
take several rounds of trial and error to reach a desired result. Unfortunately, the GTG process is easily the
slowest, as shown in Figure 12.
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Figure 12: GTG convergence time.

3.4 Spatial Generator

The same spatial generator is used in conjunction with each of the three random graph models. The
generator requires a gang affiliation for each person, plus the user can choose the difficulty (“Easy,” “Hard,”
or “Impossible”), which controls the amount of spatial mixing between members of separate gangs.

The first step in the process is to uniformly assign each gang a central location in a rectangle. Then gang
members are placed in disks around their gang center. The locations are assigned using polar coordinates,
with angle θ distributed uniformly from 0 to 2π and radius r chosen from an exponential distribution. The
rate of the exponential distribution is chosen uniformly for each gang, with all members of that gang having
the same rate. The difficulty level controls the range of rates for the exponential distributions as well as the
size of the rectangle in which the centroids are placed. The “Easy” difficulty setting has higher exponential
rates and a bigger rectangle for the gang centers, resulting in more spread out centers but tighter clusters
around each center. The “Impossible” difficulty setting gives every gang center the same location. “Hard”
is most similar to the Hollenbeck data, with examples shown in Figure 13.
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(a)

(b)

Figure 13: Distance distributions for (a) distance to community center and (b) distance between gang centers

The exponential distribution of distances is different from the distribution of gang distances in Hollenbeck.
A more detailed model is needed to accurately account for the variance in the shape and spread of gangs in
Hollenbeck. Figure 14 shows a generated power law graph with increasing spatial difficulty.
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(a) (b)

(c)

Figure 14: Power law graphs with parameters k = 1 and µ = 0.5 with increasing spatial difficulty. (a) easy,
(b) hard, (c) impossible.

4 Results

4.1 Measuring quality of results

In order to measure the quality of our results, we use two metrics: purity and adjusted mutual information.
To compute purity, each cluster is assigned to the gang which is present most frequently in the cluster.

Purity is defined as:

purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj |,

where Ω = {ω1, ω2, . . . , ωk} is the set of clusters and C = {c1, c2, . . . , cj} is the set of gangs. Purity ranges
from 0 to 1, with 1 being perfect clustering [6].

Adjusted mutual information is a metric used to compare clusterings. It does so by comparing the
expected mutual information to the mutual information as such:

AMI(U, V ) =
MI(U, V )− E{MI(T )|a, b}√
H(U)H(V )− E{MI(T )|a, b}

,
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where U is the true clustering and V is the constructed clustering. MI and E{MI} is the mutual information
and expected mutual information between U and V , and H is the entropy associated with the clusterings.

The adjusted mutual information gives a value between 0 and 1, with 1 being a perfect clustering. One
benefit to using the adjusted mutual information is that it takes into account the variance in sizes of the
clusters, since our data consists of gangs with as much as 90 members and as few as 3 members. For more
information about the adjusted mutual information and its related equations, we refer the reader to [14].

4.2 Results and analysis

We will now discuss the results from the methods in Section 2 on the Hollenbeck data. All methods were
implemented in Matlab [8].

4.2.1 Hollenbeck data

Different methods were applied to different matrices defined in Section 1.3: k-means was done using geo-
graphical information and mixed information, (1.2) and (1.4) respectively. (1.2) was used for k-medoids and
(1.3) was used for CONCOR. For spectral clustering we used (1.3) with varying parameters.

Figure 15: Individuals at their central locations with colors indicating actual gang affiliations
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(a)

6.47 6.48 6.49 6.5 6.51 6.52 6.53

(b)

(c) (d)

Figure 16: Clustering results. (a) k-means (geography), (b) k-means (mixed), (c) k-medoids (geography),
(d) CONCOR (mixed)
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(a)

(b)

(c)

Figure 17: First 3 non-trivial eigenvector plots of (1.3) for social information only (α = 1).
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(a)

(b)

(c)

Figure 18: First 3 non-trivial eigenvector plots of (1.3) for geography information only (α = 0).
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(a)

(b)

(c)

Figure 19: First 3 non-trivial eigenvector plots of (1.3) for mixed information (α = 0.5).
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(a)

(b)

(c)

Figure 20: Spectral clustering results. (a) geography only (α = 0), (b) social only (α = 1), (c) mixed
(α = 0.5).

23



Method AMI Purity
k-means (geography) 0.44 0.53

k-means (mixed) 0.44 0.57
k-medoids (geography) 0.44 0.51

CONCOR (mixed) 0.46 0.51

Table 1: Results from Hollenbeck data. K-means was performed using Matlab’s kmeans function [8]. All
values are taken from one run.

α σ1 σ2 AMI Purity
0.1 101 105 0.21 0.38
0.5 101 105 0.18 0.37
0.9 101 105 0.12 0.39
0.8 104 107 0.47 0.58
0.4 105 108 0.60 0.70
0.1 105 1010 0.46 0.56
0.9 105 1010 0.44 0.55

Table 2: Results of spectral clustering using affinity matrix defined (1.3) with various values for α, σ1, and
σ2.

Table 1 and Figure 16 show the results of various methods using either geographical information only,
social information only, or both. Figures 16a, 16c, and 20a show that using only geographical information,
the only clustering possible is into set regions that do not represent either social structure or gang territories.
Ideally, if individuals would not stray far from their own gang’s center, using only geographical information
leads to near perfect clustering, but Figure 15 shows that only a few gangs have their members located near
their central location. For that reason, clustering by using geographical information only yields low AMI
and purity values. Likewise, the clustering using only social information (see Figure 20b) also yields low
AMI and purity values. By using both social and geographical information, and with the correct choice of
σ1 and σ2 we obtained a purity value of 0.7 and an AMI value of 0.6 (see Table 2), which are significantly
higher than the results from Table 1.

Figures 17, 18, and 20c show how combining both the social and geographical information can yield
better results (all three were done using σ1 = 104 and σ2 = 107). Figures 17a, 17b, 17c show very little
information about the structure of the group when using social information only, while Figures 18a, 18b,
18c show only the gang territory structure and does not identify members who are far away from the central
location of the gang they are affiliated with. Only when we combine the information do we get structure
that can potentially identify individual gangs. Figures 19a, 19b, 19c show the structure using only the first
3 eigenvectors. Since these results are interesting, we will spend more time analyzing these structures.
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(a)

(b)

(c)

Figure 21: Eigenvectors 4 through 6 plots of (1.3) for mixed information with α = 0.5.
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Figures 19a and 19b clearly show a high concentration of identified gang members in specific locations.
Figure 19a identifies an area (in dark red) which contains the gangs Breed Street, Clarence Street, and Tiny
Boys. Figure 19b identifies Big Hazard (in dark blue). Furthermore, the next few eigenvectors in order
of decreasing eigenvalues identify more gangs (see Figures 19c, 21a, 21b, 21c). In order to understand the
significance of these identifications, we refer to [12] about the rivalry network of gangs in Hollenbeck. Since
the gang territory map (Figure 1) and the rivalry network (Figure 22) are from 2003 while our data is from
2009, it is possible that some gangs no longer exists and that territory is different. We make the assumption
that large dominant gangs from 2003 are still in the same position.

Figure 22: Rivalry network of gangs in Hollenbeck with gangs in their central location [12].

Figure 22 and [12] show that the main reason for a rivalry is proximity to another gang. The gang Hazard
is positioned in the center of Hollenbeck and has many rivalries with other gangs. Also gangs like Breed
Street and Krazy Ass Mexicans have many rivalries due to their central location in the southern half of
Hollenbeck. Since our data consists only of non-criminal stops, we expect that gangs with a high number of
rivalries will have more entries corresponding to a stop with someone within their own gang versus someone
else. We also expect that these gang members will have central locations closer to each other. Figures 23a
and 23b show how we are able to identify the gangs Big Hazard and El Sereno with only a few individuals
incorrectly identified.
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(a) (b)

(c)

(d)

Figure 23: Results of thresholding each eigenvector to identify gangs. (a) identifies gang 3, (b) identifies
gang 10, (c) identifies 2 gangs, (d) fails to identify. Eigenvectors were calculated using Algorithm 2.3 and
with σ1 = 100 and σ2 = 107.
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An interesting result comes from Figure 23c which shows one cluster containing two gangs, namely
Primera Flats and The Mob Crew. Although Figure 22 shows that there is no rivalry between them, we
believe that this shows cooperation between these two gangs, but without a current rivalry network, we
cannot verify these results. Figure 23d shows that our algorithm performs poorly when detecting gangs of
small size. We believe this problem occurs because forcing k-means to make 31 clusters leads to k-means
clustering two gangs into one cluster (as in Figure 23c) and clustering outliers into another. This indicates
that the social structure of Hollenbeck contains less than 31 clusters. Unfortunately, without more current
information, we cannot draw any further conclusions as to exactly how many clusters Hollenbeck contains
(see Section 6).

5 Conclusion

The ability of our algorithm to in detecting the gang structure from the provided data is surprising. While
geographic data alone was ineffective and social connection data was too sparse, when used in conjunction,
the information contained in both sets of data provided insights that neither set provided on its own. We
believe that our method may be revealing social structures that transcend gangs, such as cooperations and
rivalries. This remains to be verified in the field. Due to the appearance of higher order structures, requiring
the algorithm to divide into 31 clusters may mask the dominant social structure. However, at present we
have not devised a better way to extract this information from the eigenvectors, besides visually.

The gathering of non-criminal stop data is not unique to Hollenbeck. Our method can be applied in a
variety of situations where geography and social contact are recorded and relevant to the social structure.
The artificial data we have created will provide a means by which to understand the patterns our algorithm
locates. At present, whether or not our artificial data is a reliable test of our algorithm is unclear.

6 Future Work

Much remains to be done in regards to this project and this particular method. It is clear that the eigenvectors
are revealing latent social structures. We are still uncertain how best to distill these spectral details and
to interpret this structure. Requiring the a priori input of the number of clusters may interfere with
the detection of higher order clustering (multiple gangs). To address this issue, we believe a thresholding
approach on the magnitudes of the eigenvector elements may be more enlightening instead of relying on
k-means (see Algorithm 2.3 step 4). We plan to explore this approach in the future. We will also try to
improve our results by incorporating information about the gang territory an individual was stopped in into
the affinity matrix (1.3) by establishing an affiliation matrix F defined as:

F =


Gang1 Gang2 . . . Gang31 Unclaimed

v1
v2
...
vn

, (6.1)

where Fij = 1 if vi was stopped in territory of gang j (or in an unclaimed territory if j = 32) and adding it
to (1.3) as such:

Ŵij = α exp(
< fi, fj >

2

σ1
) + β exp(−d(vi, vj)

2

σ2
) + γ exp(

< Fi, Fj >
2

σ3
), (6.2)

where < Fi, Fj > is the dot product between the i-th and j-th row of the affiliation matrix F (6.1) and
α+ β + γ = 1.

The artificial data we have created needs to be thoroughly tested and compared to real data. Then by
varying the structures contained in our artificial data and clustering it with our method (Algorithm 2.3),
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we hope to better understand the social structures our algorithm exposes. More actual Hollenbeck data will
provide another means of validation of our algorithm.
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