
Epilepsy Classification, EEG Analysis, and EEG-fMRI fusion

Kathryn Heal, Kaitlin Navarro, Margalit Wollner, and Eddie Yan
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Introduction

This study addresses three distinct challenges within the field of medical imaging.
We first approach the topic of epilepsy diagnosis from the supervised and unsupervised per-

spectives. Fludeoxyglucose Positron Emission Tomography (FDG-PET) scans are used to aid in
the diagnosis of epileptic patients. Two challenges which are encountered during the interpreta-
tion of these scans are the need for expert analysis, and the level of difficulty in detecting the
subtle changes in brain metabolism and structure. We aim to create a computer-aided classifier
that incorporates Bilateral Temporal Lobe Epilepsy (BTLE) patients, leading to more robust and
accurate classification and diagnosis. To this end, we explore various supervised and unsupervised
algorithms. By observing the behavior of our classifiers we obtain novel pathological insight.

We then offer novel methods to visualize neural patterns. Electroencephalography (EEG) is
widely used to obtain information about neural activity in a temporal context. In the field of
neuroscience, various types of spectrograms resulting from continuous wavelet transforms are cur-
rent used for analyzing spectral patterns. In this study, we consider whether there exists a set of
spectral bands which are superior to those currently used by neuroscientists to filter EEG signals
before the data is interpreted. We offer a new set of adaptive spectral bands, and a corresponding
adaptation of the Empirical Wavelet Transform (EWT), which could have useful applications to
neuroscience. In addition to this, we introduce a new visualization tool which could offer a more
precise representation of neural rhythms with respect to both time and frequency.

We finally pursue the fusion of information obtained from two different imaging modalities. As
EEG and Functional Magnetic Resonance Imaging (fMRI) are two methods of recording neural
activity, EEG-fMRI fusion is an area of active research. Since they are vastly different measures of
activity, mere juxtaposition of the measurements is an insufficient comparison. The first challenge of
comparison is that the measurements exist in two different spaces; the second is using a comparative
metric that takes into account both spatial and temporal shifts in activity. We use the method of
Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) to first transform
the EEG into 3-d space. We then use Temporal Kernel Canonical Correlation Analysis (tkCCA)
to measure the correlation between the EEG and fMRI.
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Chapter 1

Epilepsy Classification

1.1 Temporal Lobe Epilepsy

Epilepsy is one of the most common neurological disorders, affecting approximately 1-2% of the
general population [18]. It encompasses many disorders that are best characterized by recurrent and
unprovoked seizures. Specific seizure types can be split into groups according to their features, but
the disease as a whole is split into two main types: generalized and partial. Generalized epilepsies
are characterized by seizures that begin in both hemispheres of the brain and do not have an
identifiable seizure onset zone. In contrast, partial epileptic seizures originate in a localized section
of the brain and can then spread to other regions. Reports show that Temporal lobe epilepsy (TLE)
is the most common seizure subtype and comprises 50 to 60% of all focal epilepsies [2].

Positron Emission Tomography (PET) brain scans produce a 3-dimensional image of metabolic
processes across the brain. The diagnosis of the disease relies on expert analysis of these scans.
Areas of focal, asymmetric hypo metabolism indicate the location of a potential seizure onset zone.
However, metabolic abnormalities may not be observable until 10 to 15 years after the onset of
seizures due to the progressive nature of the disease.

In order to avoid misdiagnosis, it is crucial to distinguish between those with epilepsy and those
with seizure-like disorders such as (Persons with) Non-Epileptic Seizures (NES). Non-epileptic
seizures are psychiatric events that mimic many of the physical symptoms of epilepsy without hav-
ing any of its electrographic features [17]. One third of ”medication refractory” epileptic patients
actually have NES [16]. Unfortunately, many patients with NES are diagnosed with temporal lobe
epilepsy and are erroneously treated with Anti Epileptic Drugs (AED) [27], [8] .These drugs are
accompanied with potentially fatal side effects and cause the patient to incur unnecessary treat-
ment expenses ($100,000/year). When medication fails to effectively control seizures, resective
surgery often becomes the main treatment option [17]. More than this, it has been shown that
surgery early on in the disease will be more effective in seizure control [21].Finally, due to the high
intrahemispheric hippocampal connectivity, unilateral disease may progress toward bilateral dis-
ease. Bilateral TLE patients are no longer eligible for surgery [17],as resection of the hippocampus
would severely damage long-term episodic memory. This would leave the patient with permanent
anterograde amnesia, unable to create new memories, similar to the famous case of HM [4].

The relationship between BTLE and other temporal lobe epilepsies remains unclear. It is pos-
sible that BTLE is independent of both Left Temporal Lobe Epilepsy (LTLE) and Right Temporal
Lobe Epilepsy (RTLE), exhibiting its own unique patterns and characteristics. It has also been
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Figure 1.1: PET scan
Keihaninejad et al. PLoS One 2012

suggested that Temporal Lobe Epilepsy (TLE) is itself a bilateral disease, but abnormalities may
be exhibit themselves more prominently in one lobe over the other [17]. If BTLE does share char-
acteristics with both LTLE and RTLE, then the unilateral cases can provide important information
for the classification of the bilateral case [22].

1.2 Project Goal

From previous work, we have a classifier that simultaneously diagnoses and lateralizes NES,
LTLE, and RTLE with 76% accuracy [17]. Our goal is to incorporate BTLE patients into the ex-
isting classifier. We wish to supplement, rather than replace, expert analysis with computer aided
classification. This can be used as an additional tool to either aid in detecting subtle metabolic
abnormalities in PET scans or as a preliminary screen to later confirm findings made by neuro-
radiologists. Either case would advance diagnostic capabilities and contribute to earlier and more
effective treatment of patients.

Adding in data from BTLE patients increases our classification complexity as we have relatively
few BTLE patient data to work with compared to other seizure groups (nBTLE = 32 vs nNES =
32). If the information from patients with LTLE and RTLE can help characterize the patients with
BTLE, this limited data may be sufficient to build an accurate diagnostic tool.

1.3 Data

All of the 123 patients that were included in our analysis were admitted to the University of Cali-
fornia, Los Angeles (UCLA) Seizure Disorder Centers video-EEG Epilepsy Monitoring Unit (EMU)
between 2005 and 2012. Each patients diagnosis was based on a consensus panel review of their
clinical history, physical and neurological exam, neuropsychiatric testing, video-EEG, interictal
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Figure 1.2: =
Regions of Interest within the brain

Engel et al. JAMA 2012

FDG-PET, ictal FDG-PET, structural and diffusion Magnetic Resonance Imaging (MRI) and/or
CT scan. This multimodal assessment is the gold standard for epilepsy diagnosis and localization
of the epileptic focus [19], [6]. The patients included in this analysis were chosen because they had
an FDG-PET after 2005 and had no history of penetrative neurotrauma, including neurosurgery.
These patients were diagnosed either with non-epileptic seizures, left temporal lobe epilepsy, right
temporal lobe epilepsy, bilateral temporal lobe epilepsy, or unspecified temporal lobe epilepsy.

Patient Type Number of Patients
NES 32

LTLE 39

RTLE 34

BTLE 14

UTLE 5

PET and MRI images were acquired according to the best clinical practices at the time of
acquisition. PET/CT studies were acquired using a Siemens Biograph scanner. After a minimum
fasting period of 6 hours, patients received 0.14 mCi/kg of 18F-FDG-PET intravenously. During
the ensuing 40 minute uptake period with concomitant EEG monitoring to confirm interictal status,
the patients waited in a quiet, dimly lit room with their eyes open. PET images were reconstructed
with an iterative algorithm (OSEM: 2 iterations, 8 subsets). CT images were reconstructed using
filtered back projection at 3.4 mm axial intervals to match the slice separation of the PET data, and
used for attenuation correction. PET images were determined to be interictal by clinical findings
and concurrent scalp EEG.

1.4 Data Processing

The number of voxels in the PET image is orders of magnitude larger than the number of
samples, therefore we have insufficient data to effectively characterize the diagnostic effect of each
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voxel. Therefore, we averaged the metabolism of voxels within 47 anatomically defined regions of
interest as defined by NeuroQ. This serves as a preliminary biologically-motivated feature selection
method that will likely improve our performance.

1.5 Methods

1.5.1 Cross Validation

The performance of each of our classifiers was evaluated using Cyclical Leave-One-Out Cross
Validation (CL1OCV). In CL1OCV, a single data entry is removed and considered the validation
data (leave-one-out) while the remaining data is considered the training data. The process cycles
through the data such that each data point is treated as the validation once.

We compared the performance of each classifier that of the näıve classifier using a 95% Confidence
Interval (CI). The näıve classifier classifies each patient as the most frequent class of the data.

We did not train our classifiers on unspecified patients—classifiers that incorporate unspecified
patients incorporate them only as part of the test set.

1.5.2 The Permutation Test

In the case where there is bias in our results, specifically where feature selection was based on
cross-validation accuracy, we determined the significance of our results using the permutation test.
The permutation test randomly permutes the labels of the training data and reruns feature selection
on the scrambled data. By comparing the performance of feature selection on the scrambled data
with the performance of feature selection on the unperturbed data, we determined if the features
selected were meaningful.

1.5.3 Clustering Methods

Unsupervised Clustering

Unsupervised clustering methods attempt to separate the data into classes without knowledge
of the true labels of the data during the clustering step. We attempted classification based on a
majority-vote method (knowledge of the true labels is incorporated at this step) with both k-means
and spectral clustering. Both clustering techniques while unsupervised, differ in their methods of
separating data.

k-means Clustering k-means determines the clusters by assigning each point to the cluster
with the closest floating centroid (center of the cluster). The location of the centroid is recomputed
iteratively based on the data points assigned to its cluster. Because the centroids are initialized
randomly to observed points in the data, the k-means algorithm is not deterministic and the
identity of the clusters may vary wildly between successive executions on the same dataset. In
practice, k-means is usually executed repeatedly and the result that best clusters the training data
is selected. The best-case cluster is determined by some criteria such as minimum total intra-cluster
distance. We repeated the k-means clustering process 20 times each time the algorithm is used–this
is important as k-means is also used as a step in the spectral clustering process.

As part of a classifier, k-means was used to cluster the training data with the intention of
producing clusters that meaningfully correspond to the training labels in some way. (As the labels
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of the data are not explicitly associated with the distance function used by k-means, this far from
guaranteed.) The test point is classified by deriving which cluster of the test data it belongs to
and assigning it a label determined by the majority of the cluster (majority vote). In the case of
k-means, this is trivially done by applying the rules of the algorithm (assign the test point to the
cluster with the nearest centroid).

Spectral Clustering Spectral clustering is defined by two main algorithms, normalized spectral
clustering and unnormalized spectral clustering. These algorithms can be thought of as relaxed
versions of the RatioCut and Ncut problems, respectively [29].

Spectral clustering plays the same role in an unsupervised classifier that k-means does. Spectral
clustering, however, determines clusters using the eigenvectors of the graph laplacian L derived from
similarity (in the form of a similarity matrix W , see [29] for details) whereas k-means essentially
uses the inverse of a similarity metric (distance). The choice of similarity is a crucial decision, and
is a challenging problem in and of itself beyond the scope of this report. We use Gaussian similarity,
defined as:

w = e−
(x1−x2)

2

2σ2 .

For classification, we used a majority vote process similar to that used with k-means, but deriving
the cluster of the test point without explicitly clustering it with the training data is slightly more
involved. For our purposes, we consider the RatioCut and Ncut objective functions the normalized
and unnormalized spectral clustering cases. We assume, that because the types of spectral clustering
used were relaxed form of the cut problems, that they provide a good approximation of spectral
clustering. To define the RatioCut and Ncut objective functions, we first consider the adjacency
matrix W where wij gives the weight of the edge connecting verticies i and j. From this definition
of the adjacency matrix, we adopt the notation used by Luxburg et al.:

W (A,B) :=
∑

i∈A,j∈B
wij .

The definition of a cut that produces partitions of the graph A1, ...Ak then follows as

cut(A1, ...Ak, ) :=
1

2

k∑
i=1

W (Ai, Āi).

From the definition of a cut, RatioCut and Ncut are defined:

RatioCut :=
k∑
i=1

cut(Ai, Āi)

|Ai|
.

Ncut :=
k∑
i=1

cut(Ai, Āi)

vol(Ai)
.

where |A| is the number of vertices in A and vol(A) is the sum of the edge weights in A [29]. Note
that to minimize the value of the objective functions, the clusters found should have low similarity
with each other. Typically, these objective functions are used to determine the graph cuts given
a number of desired partitions. In the case of classification, because the graph cuts are known a
priori, we can use the RatioCut and Ncut values to determine the appropriate cluster. That is,
we tentatively add the test point to each of the clusters and compute the corresponding objective
function and ultimately choose the cluster that minimized the objective function.
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Spectral Learning “Spectral learning” as defined by Kamvar et al. attempts to the ground
truth of data in spectral clustering by enforcing a similarity of 1 when two vertices occupy the
same class and 0 otherwise. We used this method alongside unsupervised spectral clustering.

Choice of k Because the choice of k is made a priori and is not limited to 2 in the case of k-means
and spectral clustering, it is possible to use these clustering methods in two ways: the k = 2 case,
and the k > 2 case. The k > 2 case simply corresponds to majority vote system described above,
while the k = 2 case corresponds to a decomposition problem equivalent to that used by most
supervised clustering algorithms. A k value not equal to the number of classes can be considered
as an attempt to capture subpopulations within each class.

1.5.4 Neural Networks

A neural network is an information processing structure arranged as interconnected nodes in
successive layers. Each layer of the neural network have outputs connected to the following layer
(feedforward) and the previous layer (backpropagation). The output of a given layer is determined
by the weights associated with each of the nodes in the layer–these weights are readjusted by the
backpropagation of error through the network. We used the neural network implementation in the
MATLAB R© neural network toolbox with trainlm as the training function. The only additional
parameters specified are the number of hidden nodes per layer and the number of hidden layers.
We used both a one versus all and a modified one versus all model in order to adapt our multi-class
problem to neural networks.

One vs. all and modified one vs. all

The one vs. all model corresponds to the following labeling of classes:

NES 1000
LTLE 0100
RTLE 0010
BTLE 0001

The modified one vs. all model operates under the assumption that BTLE is the combination of
LTLE and RTLE:

NES 100
LTLE 010
RTLE 001
BTLE 011

In the modified one vs. all case, we classified an instance of test data as BTLE if the initial
classification (based on the position of the maximum element of the output vector) was LTLE or
RTLE and the ratio between the LTLE and RTLE components of the output vector is within a
certain heuristically determined threshold [3/4, 4/3].
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Optimizing the number of nodes and layers

We used a grid search method to find a suitable number of hidden nodes and layers, but we
tend to favor arrangements with fewer nodes per layer due to our limited computational time.
We considered a search space of up to 6 hidden layers and 30 nodes per layer. For the sake of
computational expense, we use an architecture with the same number of nodes for every hidden
layer. Note that the performance of a given configuration is variable in the grid search as MATLAB’s
neural network implementation is not deterministic with respect to the training step.

1.5.5 Support Vector Machines

We implemented a soft margin support vector machine (Cortes & Vapnick 1995) using the
LibSVM package for MATLAB R© (Chang et al. 2011) [3] where the objective function of the
hyplane is:

1

2
w2 + CF

(
l∑

i=1

ξi

)
subject to the constraints

yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0

Where each instance of data xi has a label yi ∈ {−1, 1}, C is a constant, F is a monotonic convex
function, and the sum of ξi is the sum of training errors [5].

In accordance with the guide developed by (Hsu et al. 2003), we used a linear kernel instead of
the default radial basis function, as it is suggested that a non-linear remapping of high-dimensional
data does not seem to improve performance [13]. All other LibSVM parameters were defaults.

1.5.6 Feature Selection

Feature selection is motivated by several problems associated with data with a large number of
dimensions (in this case averaged and normalized brain radioactivity for each Region(s) of Interest
(ROI). Namely, we wish to avoid the “curse of dimensionality” and eliminate features that are
irrelevant to the classification problem.

We distinguish between two classes of feature selection techniques: “supervised” and “unsu-
pervised.” In general, we refer to feature selection techniques that are tied closely to classification
performance as “supervised” and techniques that do not consider performance directly as “unsuper-
vised.” Unsupervised techniques are generally based on statistical parameters, such as Mahalanobis
distance, covariance (Principal Component Analysis (PCA)) [26], variance (PCA) [26], and joint
probability density (Independent Component Analysis (ICA)) [14].

“Unsupervised” Feature Selection

ICA is a linear projection designed to separate mixed signals into independent components
that were not directly observable in the data. Instead of diagonalizing the covariance matrix, the
independent components are constrained to be maximally statistically independent. To accomplish
this, we used the iterative fastICA algorithm in MATLAB (Mathworks, MA) [14]. In our case, this
means separating the overall radioactivity/metabolism in individual regions of interest into what
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we think represent metabolic networks across the brain, which we can then examine for patterns
that may differ between seizure groups. The number of independent components we select allows
us to control the size of the brain networks we will focus on: fewer ICs means larger networks,
while more ICs means smaller networks [14].

PCA works to reduce the dimensionality of our data projecting it onto a lower dimension, high
variance, subspace. This method assumes that noise has low variance compared to meaningful
features. A linear transformation is applied to the data that diagonalizes the covariance matrix.
The eigenvalues are then ordered such that the first few principal components will contain as much
of the original data information as possible [25].

“Supervised” Feature Selection

We explored the use of several “supervised” feature selection algorithms: (Sequential For-
ward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selec-
tion (SFFS), Sequential Floating Backward Selection (SFBS)). SFS and SFFS share a bottom-up
approach where features are sequentially added while SBS and SFBS share a top-down approach
where features are selectively removed. That is, each algorithm attempts to find a subset of features
that give the best accuracy in classification. [24] Pudil et al. introduced the concept of floating to
sequential feature selection so that features may be added when previously removed in the case of
SFBS and vice versa in the case of SFFS. [24]. The algorithm stops when no more features can be
added without lowering the value of the objective function (bottom-up) or when no more features
can be removed without lowering the value of the objective function (top-down).
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Figure 1.3: Simplified Flowchart for SFFS
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1.6 Results

1.6.1 Clustering

We present the results of k-means and spectral clustering in the case of a trinary classifier
(excludes BTLE).

Unsupervised clustering

Classifier k Accuracy
k-means 3 35.238%
k-means 5 20.952%
k-means 10 29.524%
Unnormalized spectral clustering 2 38.095%
Normalized spectral clustering 2 26.667%
Unnormalized spectral clustering 3 39.048%
Unnormalized spectral clustering 5 37.143%
Unnormalized spectral clustering 10 35.238%
Normalized spectral clustering 3 39.048%
Normalized spectral clustering 5 33.333%
Normalized spectral clustering 10 39.048%
Näıve N/A 37.143%
Näıve 95% CI upper bound N/A 46.385%

No unsupervised method was able to reliably outperform the näıve classifier.

Supervised clustering/spectral learning

Classifier k Accuracy
Unnormalized spectral clustering 2 39.048%
Normalized spectral clustering 2 39.048%
Näıve N/A 37.143%
Näıve 95% CI upper bound N/A 46.385%

No supervised spectral clustering method was able to reliably outperform the näıve classifier.

1.6.2 Neural Networks

We employed a grid search in both the one versus all case and the modified one versus all case.
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Figure 1.4: One vs. All
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Figure 1.5: Modified One vs. All
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The results of both grid searches seem to favor an increased number of nodes per layer, followed
by an increased number of layers. This trend is somewhat more pronounced in the modified one
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vs. all case. We look in detail at one of the hotspots of the grid search from the modified one vs.
all case–1 layer and 15 nodes:

Figure 1.6: 1 Layer, 15 Nodes, 10 iterations
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The relatively higher accuracy seen for this configuration of nodes and layers now seems to be
an outlier when average over multiple iterations. Neural networks manage to outperform the Näıve
classifier, but not by an impressive margin.

1.6.3 Support Vector Machines (SVM)

As multi-class support vector machines are built on binary classifiers, we first consider the case
of using a support vector machine to distinguish between BTLE and NES, LTLE, and RTLE. Note
that these pairs represent only a subset of all the classifiers needed to build a single multi-class
classifier with these four classes.
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Figure 1.7: SVM: Pairwise binary classifiers
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*+SFFS,SFBS indicate that the corresponding feature selection algorithm was used.

Our classifier was not able to outperform the näıve classifier in the case of LTLE versus BTLE
and NES versus BTLE. In the RTLE versus BTLE case, feature selection considerably improved
performance and was able to achieve an accuracy of about 85%.

Next, we present the quaternary classifier, which attempts to distinguish between NES, LTLE,
RTLE, and BTLE. This classifier also incorporated the unspecified patients. The unspecified
patients do not affect the training of the classifier, and they only affect the feature selection of the
classifier in the biased case.
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Figure 1.8: Quaternary Classifier
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*+SFBS indicates feature selection was used. **Biased indicates feature selection trained on
cross-validation accuracy.

The biased case Normally, feature selection is performed during the training phase of the al-
gorithm, and feature selection is used to maximize some criteria such as training accuracy or a
nested cross-validation accuracy. In the biased case, in order to consider the features most rele-
vant to classification, we instead selected features based on the CL1OCV accuracy. To show that
these selected features are meaningful in terms of the actual classes of the data, we perform the
permutation test.

Features Selected We find that SFBS was the most successful feature algorithm we imple-
mented, likely because it is the least susceptible to overfitting (both because of its top-down ap-
proach and because of its floating property). Using SFBS, we present a ranked list of the size most
significant features with respect to classification performance in the quaternary case.

Rank Feature
1 right pos Medial Temporal Cortex
2 right inf lat ant Temporal Cortex
3 right Parietotemporal Cortex
4 right sup lat Temporal Cortex
4 right inf Frontal Cortex
4 left inf lat pos Temporal Cortex
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1.7 Discussion

Unsupervised Classifier Results with unsupervised clustering algorithms indicate that tradi-
tional similarity measures do not generalize well to FDG-PET data. We suspect that this is the
result of Euclidean distance not generalizing well to our data, due to its high-dimensionality and
the significance of each dimension not being known a priori. If unsupervised clustering algorithms
could be adapted to the epilepsy problem, it would be interesting to further investigate the values
of k, as k can be chosen in an attempt to identify new and different ways that epilepsy may be
expressed within the traditional classes.

Supervised Classifier We find that spectral learning is best suited for the case where the data
is a mixture of labeled and unlabeled data and the behavior of the similarity function is well
understood with regard to the labels. In our case, there is a ground truth for almost all the data,
so clustering in the case where the number of clusters k is the same as the number of distinct classes
is a trivial problem where classification is reduced to choosing the cluster with the highest average
similarity to the test point. This is roughly equivalent to the k-means algorithm, as essentially all
of the steps of the spectral clustering algorithm are lost. On the other hand, choosing a number of
clusters k greater than the number of classes does not improve this scenario as it is not meaningful
to attempt to cut a connected component where all of the edges have weight 1.esults with spectral
learning agree with our doubts regarding the applicability of this supervised technique with our
data.

Neural Network Grid Search From the overall trends shown in the grid search, it appears
that the representation of BTLE as a combination of both LTLE and RTLE gives better overall
classification performance–suggesting that this may be a better characterization of the disease. We
suggest that given the availability of more computational time, that the grid search method be
modified to consider the mean performance of each configuration due to the variability seen in our
investigation of a configuration that seemed to perform well initially. Though neural networks gave
considerably better results than both supervised and unsupervised clustering algorithms, it was
not computationally feasible for us to consider more exotic neural network architectures or feature
selection that we implemented with LibSVM.

Quaternary Classifier These results seem to indicate that SVM were not able to extract mean-
ingful trends in the data in the case of RTLE and NES. That SFFS and SFBS subsequently
worsened the accuracy of the classifier suggests that feature selection overfit the data. It is in-
teresting to note, in the RTLE vs. BTLE classifier, however, that SVM found meaningful trends
initially and that feature selection managed to select even more meaningful features. It may be
possible that this is due to some similarity in the underlying pathology of BTLE to both NES and
LTLE but not RTLE. This would be expected if BTLE could be likened to a form with LTLE with
a higher level of symmetry.

“Unsupervised” versus “Supervised” Feature Selection Overall, we found that unsuper-
vised feature selection failed to extract tractable patterns in our data. We hypothesize that the
ineffectiveness of “unsupervised” techniques is the result of classification performance being de-
pendent on subtle trends expressed by networks of brain regions, and not necessarily by the most
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separable components or networks. Additionally, “unsupervised” factor analysis introduces the
problems of choosing the number of and components to use–which are also nontrivial.

SFBS Features We caution that the rank order of features found by SFBS not be weighted too
heavily, as the floating nature of the algorithm emphasizes finding groups of features (which corre-
spond to brain networks in our case) rather finding features strictly by their individual significance.

1.8 Conclusion

We find that unsupervised classification techniques, in their current form, are inadequate for
the machine learning diagnosis of epilepsy. Overall, we find the combination of support vector
machines and supervised feature selection to be the most promising direction for machine learning
diagnosis. Perhaps with the availability of a larger and more comprehensive dataset, the generality
of support vector machines in the diagnosis of temporal lobe epilepsy can be further characterized.
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Chapter 2

Empirical Wavelet Transform

2.1 Introduction/Motivation

When a subject is presented with a visual stimulus (in our experiments, a flash of a symbol
in a darkened environment), different parts of their brain emit waves of certain frequencies. A
system of 256 extracranial EEG sensors, or channels, pick up these signals and record them as
one-dimensional signals in the time domain. Each experiment is temporally partitioned into 144
successive epochs, each lasting for ten seconds. The flash is presented at second two of each epoch.
This process is shown in Figure 2.1.

Many times analysts will examine the EEG signals using signal processing techniques, searching
for patterns in the data. Neuroscientists primarily use the spectral bands. Many times it is useful
to apply a band pass filter on the original time-domain signal to extract relevant information about
the aspects of each wave which correspond to each of the five historically defined spectral bands.

We will refer to the δ, θ, α, β, γ arrangement, shown in Table 2.1, as the “traditional” set of
spectral bands. After discussing our novel boundary search methods purely within the context of
signal processing, we will provide our results and discuss their potential relevance to the field of
neuroscience.

One pattern which is of particular interest within the context of this experiment is that of the
alpha power over time, especially in regions near the visual cortex. We expect the alpha power to
drop immediately following the presentation of the flash, since the brain is alerted by the stimulus.

Figure 2.1: EEG Process
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Table 2.1: Traditional (Fixed) Spectral Band Definitions

After some time, the region of the brain which is activated by the visual stimulus will return to
its resting state. Consequently, the alpha power will return to its baseline amplitude. In our
experiment we jitter the flash times to avoid anticipatory brain activations.

2.2 Previous Work

Wavelet transforms are commonly used to decompose EEG signals. Typically Morlet wavelets
are preferred in the continuous wavelet transform, and the spectrogram is the visualization method
of choice. Figure 2.2 is the spectrogram which results from a continuous wavelet transform, whose
Morlet wavelets are determined by a continuous sweeping of the dilation coefficient.

In general, classical wavelets provide some sort of prescribed partitioning strategy. We use
empirical wavelets instead because they allow us the flexibility to specifically select the set of
boundaries ωn.

Figure 2.3 depicts the empirical wavelet construction process. First, a set of boundaries ωn
are defined. They can be chosen according to either a prescribed scheme (rigid wavelets) or an
adaptive scheme, which we will discuss in depth in this paper. The interval between two successive
boundary points will roughly define the support of each empirical wavelet. This set of empirical
wavelets will serve as band pass filters. As we would expect, the band pass filters will be directly
influenced by the choice of spectral band boundaries ωn.

In [11] the EWT offers an alternative to prescribed wavelet transforms. Part of the EWT method
uses boundary search methods to choose wavelet supports which are adaptable to the particular
signal at hand. Given a target number N of spectral bands, one boundary search method included
in [11] finds the boundaries of the N+1 largest local maxima of the frequency spectrum of the signal.
Between each two successive local maxima, the algorithm finds the global minimum, and defines
the resulting value as the boundary ωn. The second boundary search method featured in [11] again
finds the N+1 largest local maxima of the frequency spectrum, but then defines the boundary ωn
as the midway point between the successive local maxima.

What motivates these methods is the idea that when looking at the frequency spectrum of the
signal, each mode corresponds to a complete “mountain”. We would consider Figure 2.4(a) to be
a desirable choice of boundaries. Figure 2.4(b), on the other hand, would be an undesirable choice
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Figure 2.2: Spectrogram, CWT Using Morlet Wavelets
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Figure 2.3: Empirical Wavelet Construction
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(a) (b)

Figure 2.4: (a) Desirable and (b) Undesirable Boundary Choices

of boundaries.
In our experiments, we run our boundary detection algorithm on the average of all channels’

signals. This yields a set of boundaries which is particular to an individual subject. We use these
boundaries to build a single set of empirical wavelets for that individual, and use the EWT to filter
the individual channels, one by one, using that set.

However, the methods proposed in [11] run into issues with EEG data, because the frequency
signals of EEG tend to exhibit a 1

ω trend, and because the EEG data is characteristically jagged
and irregular. This causes the previous methods to become caught in local maximum “traps”,
seemingly insignificant pockets in the downhill slope of the signal as the time domain increases
from zero. It also causes the first of the two algorithms above to blindly find whatever is the global
minimum without checking whether the neighboring region represents a minimum of the function as
a whole. To combat this phenomenon, we employ two strategies: trend removal and regularization
on the frequency spectrum. The methods presented in [11] also inspired us to develop new adaptive
methods which were less susceptible to getting trapped in local extrema along the downhill slope
of the frequency spectrum.

2.3 Regularizing the Frequency Spectrum

Before we search for boundaries, we supply three customizable regularization techniques to
smooth the typically jagged nature of the EEG frequency spectrum at hand. A Gaussian filter,
an averaging filter, or replacement by the function’s morphological closing operator may be used
in place of the signal’s original spectrum. The Gaussian filter takes as a parameter the frame size
and sigma value, the averaging filter has a variable frame size, and the closing operator’s structural
element can be specified by the user. In our experiments we have favored frame size 10, sigma value
1.5, and structural element between 5 and 15. Figure 2.5 illustrates the effect of such regularization
techniques on the frequency spectrum of the original signal. The smoother the frequency spectrum,
the less likely the boundary search method might be to get caught in relatively insignificant local
extrema. By regularizing the function, we emphasize the most important global trends in the signal,
which encourages the algorithm to choose modes which retain the most overall information.
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Gaussian Filter, σ = 1.5, Frame = 10 Averaging Filter, Frame = 10 Morphological Closing Function, Structural Element Size = 10

Figure 2.5: Frequency Spectrum Regularization Techniques

2.4 Adaptive Boundary Search Methods

We use a variety of boundary search methods to identify points that best partition the frequency
domain so that the principal mountains remain intact. We use the pre-existing search methods
provided in [11]; we also propose two new adaptive search methods, which use information about
the spectrum to better inform boundary decisions.

2.4.1 Epsilon-Neighborhood Method

This method attempts to maintain the integrity of the traditional band arrangement, while
making slight adjustments to adapt to the individual signal (Figure 2.6). That is, for the nth
boundary point (in the figure, the white dotted line), which separates the (n − 1)th and nth
traditional bands, we consider a neighborhood of radius εn around that point. The length of this
interval, εn, is defined as follows: compare the lengths of the (n − 1)th and nth traditional band
intervals. Take the interval of minimal length, and halve that interval. Set εn equal to this length.
This method ensures that no two εn search regions will overlap. Within each neighborhood, we
search for the two local maxima of the frequency spectrum and then further restrict our search
regions. We find the global minimum within each search region, and finally define the nth adaptive
boundary point to be the returned minimum. Here, the selected boundaries are represented by the
black dotted line.

2.4.2 Closure Method

The closure method (Figure 2.7) is a departure from the traditional spectral bands altogether.
It uses the morphological closing function to emphasize the most critical peaks of the frequency
spectrum and then selects the top (N − 1) of those peaks. We then search for the global minimum
of the original spectrum on a subinterval of the frequency domain which is defined between every
two successive critical peaks retained by the previous step.

Figure 2.8 shows the boundaries returned by the Closure Boundary Search algorithm on the
spectrum of the averaged channels. It is plotted here with the frequency spectrum of the 118th
channel. We are especially interested in channel 118 because that electrode is located near the
center of the visual cortex. Thus our visual stimuli would have the biggest perceived effect near
this channel. Because we apply the algorithm to the average over all channels, we do not expect
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Figure 2.8: Spectral Band Boundaries Chosen Using Closure Method

the vertical lines in the figure to necessarily correspond to local minima of this particular channel’s
frequency spectrum.

2.5 Decomposition into Spectral Modes

In neuroscience, it is useful to decompose a signal in the time domain into components which
correspond to an established set of spectral bands. We use an Empirical Wavelet Transform rather
than a Fourier transform. Upon first inspection, using the adaptive boundary search methods intro-
duced in [11], we noticed few if any discernible patterns within the decomposed signals. When the
wavelet transform is applied, according to the adaptive boundaries found by the Closure Method,
the decomposed signals tend to exhibit “beat” patterns. This could perhaps allow for the analysis
of the envelope in the search for patterns in different kinds of neural activity.

Figure 2.9 depicts the modes determined by the EWT; the mode functions are the summands
of

f(t) =
∑
j

aj(t)cos(φj(t)).

Further, the maxima of the decomposed signals’ envelopes corresponded to amplitude peaks
(and subsequent neural events of interest) in the time-frequency plane.
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Figure 2.9: Compoments of Original Signal, Using Adapted Spectral Bands

2.6 New Time Frequency Representation

The CWT spectrogram is limited to an imprecise, splotchy representation of the important
spectral rhythms that we wish to analyze. Our signal is a composition of Amplitude-Modulated,
Frequency-Modulated (AMFM) mode functions. This makes the Hilbert transform a natural tool

to extract the amplitude aj and instantaneous frequency
dφj
dt of each mode over time. In order

to obtain a more precise time-frequency interpretation of neural behavior, we apply the Hilbert
transform to the decomposed modes of one channel at a time. The resulting time-frequency plane,
which we will refer to as the “Hilbert plane”, offers a more precise pointwise interpretation of the
relationship between time, frequency and amplitude of the signal. We use this tool to an alternative
to the original spectrogram.

Figure 2.10 shows the Hilbert plane of channel 118 when the Empirical Wavelets are built based
on the traditional spectral bands. Zooming in on the spectral patterns, we see the same alpha band
activity as before, in a more precise presentation than the spectrogram provided. The horizontal
axis is time.

Figure 2.11 is the Hilbert plane of channel 118 when the Empirical Wavelets are based on the
spectral bands chosen by the adaptive Closure Method described above, using a structural element
of size ten. Again, the Hilbert plane gives a more precise representation of the alpha band activity.
Moreover, it gives information about two new spectral patterns which were not accessible at all in
the spectrogram.

By varying the parameters of our adaptive boundary search method, we can also capture the
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Figure 2.10: Hilbert Plane with Traditional Spectral Bands
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same lower frequency patterns in the Hilbert plane that were featured in the spectrogram around
time zero. Figure 2.12 illustrates the effect of decreasing the structural element size to five. Aided
perhaps by of the natural 1

ω trend of the EEG frequency signal, we find that the weaker the
regularization strength, the closer to zero the boundaries chosen by the adaptive boundary search
methods are clumped. Therefore, for a smaller structural element size, the lower-frequency patterns
should be better captured by the Hilbert plane. This sentiment is indeed reflected in the figure; we
can now see not only the initial drop and subsequent return of the previously-termed “alpha” power,
but we can also see the sharp increase in lower-frequency power around time zero. This pleasing
result can be compared to the spectrogram in Figure 2.2. In our future work, we will further discuss
varying parameters, especially optimizing the number of spectral bands to be defined. It appears
that with an optimal choice of parameters, the adaptive spectral band Hilbert plane could prove
to offer a more precise interpretation of neural activity without a significant loss of information.

2.7 Relevance to Neuroscience

In the Hilbert plane, as we might expect, we see that the alpha band phenomena (a sharp
energy decrease immediately following each flash and eventual return to baseline value) appears
more pronouncedly in channels which are closer to the visual cortex, such as 118, than those farther
from the visual region, such as the 189th.

2.8 Future Work

In the future, we would like to use these adaptive spectral bands to provide relevant information
for cross-correlation methods, to move towards EEG-fMRI fusion.

Rather than averaging over all 256 channels to generate the signal used in our boundary search,
we would like to try averaging only those channels which correspond to the region specifically
affected by visual stimuli. This could include the vicinity of the visual cortex, for example. We
posit that this may result in the selection of adaptive spectral bands which are predisposed to
better specifically capture the spectral rhythms of some region of interest.

Alternatively, instead of averaging at all we could choose one channel located near the center
of the visual cortex as a representative and choose the boundaries based on that channel.

The allowance for a greater number of spectral bands (and consequently for additional modes)
will allow us to see more distinct spectral patterns. However, for computational efficiency as well
as ease of analysis, we would like to focus on only the most important patterns. To approach these
desires we may pursue the development of algorithms which detect the optimal number of modes
for a given signal.

Inspired by the work of [10], we are drawn to the traditionally defined γ-band in particular. We
would like to know whether potential areas of interest may reside within the γ-band, regions which
had been previously overlooked by the traditional spectral bands.

On the subject of parameter optimization, when using the closure boundary search method we
might also look into optimizing the size of the structural element given a particular averaged signal.

We also see potential for finding distinguishing characteristics of various diseases based on the
positions of boundaries chosen using the closure boundary search method.
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Chapter 3

EEG-fMRI Fusion

3.1 Introduction

fMRI is a four dimensional brain scan (x,y,z by time), measuring relative changes in oxygenated
(diamagnetic) to deoxygenated (paramagnetic) hemoglobin. As neuronal firing increases, more
oxygen rich blood flows to the active brain region, generating the Blood Oxygen Level Dependent
(BOLD) signal. This is an indirect measure of neural activity and neuronal firing is coupled to the
BOLD signal by what is known as the Hemodynamic Response Function (HRF), and the speed of
this reaction is limited by the vasal properties of blood flow.

Another complication with this measure of neural activity is that the relationship between the
exact location of oxygenation and the origin of neural electrical activity is uncertain [7]. The
location of oxygenation can not be assumed to be the exact origin of neural activity. Thus metrics
must be devised to precisely relate the BOLD signal to neural activity. One such studied and
measured metric is the aforementioned HRF, a highly informative model of temporal correlation
between neuronal local field potentials and the BOLD signal. In practice, the HRF is convolved
with a time series indicating when a task took place. The result of this convolution is then compared
with the time series in each brain voxel independently – generating a p-value for each voxel in a
mass univariate t-test [20].

The goal for this section of the project is to develop a novel process that finds the coupling
between EEG and fMRI data - which is currently unknown. Although neuronal firing is coupled
to the BOLD with the HRF, EEG is measured at the scalp, and it is unclear exactly what aspects
of neuronal firing that EEG is capturing. The chosen algorithm to detect – or deconvolve – this
unknown relationship is known as tkCCA. tkCCA is a metric for finding projections of the data
that maximally correlates the two data sets, while allowing shifting of the data sets with respect to
each other [1]. This allows for a multivariate correlation between two data sets whose correlation
might be higher if there is a different alignment of the data. This is ideal for EEG-fMRI fusion
as the correlation between the two is likely to be highest with a temporal shift [1]. The graph
of the correlations at different time shifts is referred to as the canonical correlogram (CC) and is
compared to the HRF.

A benefit of tkCCA is that the two datasets require only one dimension in common, in the
Bießmann et al case this was the temporal dimension [1]. For this study we will also take the
temporal dimension to be the common dimension. However, in addition the second dimension
will be shared, the spatial dimension. This will be done by transforming the EEG data from the
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time-frequency plane into 3-d space by time using a method called sLORETA. sLORETA is one of
the more recent solutions to the EEG inverse problem. It has the benefits of returning a smoothed
solution, so there are no isolated pockets of inactivity surrounded by activity, and it has good
accuracy for placing deep sources [23]. We then use an implemented version of our own algorithm
to project EEG sources into voxel space [9].

The motivation for transforming the EEG data into fMRI voxel space before computing cor-
relation with tkCCA will be discussed later in this report. Also, the tkCCA of this experimental
data without first transforming the EEG data into voxel space is being explored by another project
working on this data set.

3.2 Methods

The data we are using for this portion of the project is from the same study as the data we
use in Empirical Wavelet Analysis portion of this report. We are using the same EEG data. We
are also using fMRI data collected with a three Tesla Siemens fMRI scanner. The experimental
parameters of randomly presented flashes, separated by at least eight seconds, are the same for the
data collected in the fMRI as they are of the EEG data collected. While the fMRI was performed,
simultaneous EEG was collected using a 256 Magnetic Resonance (MR) safe electrode cap. In the
future we plan to perform this method of analysis using this artifact cleaned EEG data.

The EEG data is decomposed into the traditional spectral bands. This will allow for more
meaningful and comparable results.

For both the EEG and fMRI data the recordings are segmented into ten second segments with
the stimulus at two seconds. Then sets of twelve epochs (segments around a single stimulus) are
averaged together and our process of sLORETA and tkCCA is run on this preprocessed data set.

3.2.1 Standardized Low Resolution Brain Electromagnetic Tomography

As previously stated, sLORETA is a solution to the EEG inverse problem. It localizes the point
sources from which neural activity originates using the electric potentials measured by the EEG cap
electrodes. This method has high accuracy for localizing deep sources onto deeper cortex instead
of places these as sources on outer cortex. This is a problem with many inverse problem solutions
as the EEG electrodes most effectively measure neural activity originating from the outer cortex as
this is closer to the recording apparatus and the signal is stronger. sLORETA has the advantage
of parsing out the lower powered signals originating from deeper cortical sources and placing them
in the accurate locations, instead of mistaking them as originating from outer cortical sources [23].

A second important benefit of sLORETA is that it returns a smoothed result. While other
solutions to the EEG inverse problem can return sources where there are regions of activity sur-
rounding small areas of inactivity, sLORETA returns a result with smoothed regions of activity.
This is based on the idea that if an area of the brain is active then this activity will not surround
inactivity but that the activity should continue through the entirety of an area [23].

Data analysis was performed with Brainstorm (Tadel et al. 2011), which is documented and
freely available for download online under the GNU general public license (http://neuroimage.usc.edu/brainstorm).
The Brainstorm sLORETA tool is used to compute the solution to the inverse problem [28]. How-
ever first the BEM surfaces must be generated [12, 15] and the head model must be computed, a
step also performed using the Brainstorm tools. The parameters for the inverse solution by the
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sLORETA method are unconstrained source orientations, whitening using PCA, a signal-to-noise
ratio of 3, the full noise covariance matrix regularized with parameter 0.1, and depth weighting of
order 0.5 and maximal depth 10.

The inverse solution to the EEG signal decomposed using the traditional spectral bands is
computed individually and exported as 4-d matrices. Figure 3.1 shows the results of the inverse
method for one epoch of alpha frequency data, as visualized on the cortical surface [28].

0.28 
seconds 
before 
stimulus

0.5 
seconds 
after 
stimulus

2.2 
seconds 
after 
stimulus

Figure 3.1: The left column shows the power of the alpha frequency band of collected EEG data for one averaged
epoch, the data is visualized as time by power with each line corresponding to a channel (a single electrode recording
data). The movement of the red line in the three otherwise identical graphs marks the current time, which corresponds
to the figure in the right column on the same row. These figures are the solutions to the inverse problem using
sLORETA. They are projections of the power measured by the electrodes onto the cortex. This graph shows the
expected alpha activity before stimulus, the nearly complete drop-off of activity shortly after the stimulus, and the
re-emergence of activity further post-stimulus. This image was created using Brainstorm [28].

3.2.2 Temporal Kernel Canonical Correlation Analysis

Our selected method of analyzing correlation is tkCCA. tkCCA has the benefits of determining
the multivariate correlation between two data sets, allowing for relative shifting of the data sets as a
method of improving correlation, and utilizing a kernel trick to decrease computational complexity.
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tkCCA is based on the method of Canonical Correlation Analysis (CCA) which is a metric for
finding the maximally correlated features of two data sets.

For two multivariate x ∈ RM and y ∈ RN , CCA estimates two normalized linear
filters wx ∈ RM and wy ∈ RN , called canonical variates, such that the correlation
between the projections wTx x and wTy y is maximized:

arg max
wx,wy

wTxCxywy

s.t. wTxCxxwx = 1 and wTy Cyywy = 1.

where Cxx ∈ RM×M and Cyy ∈ RN×N denote the respective auto-covariance matrices
and Cxy ∈ RM×N the crosscovariance matrix between x and y [1].

Kernel Canonical Correlation Analysis (kCCA) decreases the computational complexity by uti-
lizing a kernel trick and working with:

KX = XTX and KY = Y TY

instead of the covariance matrix, where X and Y are the data matrices of the two data sets [1].
This also allows for working with data matrices of variables instead of two multivariate variables.

The filters in the input space of each variable are then given as a linear expansion
fo the data points

wx = Xα and wy = Y β

where the vectors α ∈ RL and β ∈ RL are the solutions to the generalized eigenvalue
problem in kernel space [1]:[

0 KXKY

KYKX 0

] [
α
β

]
= ρ

[
K2
X 0

0 K2
Y

] [
α
β

]
In order to prevent overfitting, regularization parameters (κX , κY ) are added to the generalized

eigenvalue problem, which becomes [1]:[
0 KXKY

KYKX 0

] [
α
β

]
= ρ

[
K2
X + κXKX 0

0 K2
Y + κYKY

] [
α
β

]
The key benefit of tkCCA is the use of a time shift. This is done simply by using X̃ in place of

X where:

X̃ =


Xτ1

Xτ2
...

XτT

 ∈ RMT×L

where each Xτi is a copy of X shifted by τi with respect to Y [1] .This also requires the use of:

w̃x =


wx(τ1)
wx(τ2)

...
wx(τT )


where wx(τ) = Xτατ [1].

The regularization parameters were optimized by running tkCCA on 25 sets of parameters and
finding the optimal parameters for each run.
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Figure 3.2: This is an exam-
ple of a CC. This CC is from
running tkCCA to find the cor-
relation of the EEG spectral
band alpha and the fMRI data
with time shifts of 0.2 from
time zero to 2.8. The x-axis
is the temporal shift and the
y-axis is the correlation of the
two data sets. The y-axis
ranges from zero to one with
zero being absolutely no corre-
lation of the two data sets at
that time and one being com-
plete correlation at that time,
meaning the data sets are iden-
tical.

3.3 Results

The visualizable results of tkCCA are the CC, which is a plot of the correlation scores of the
data sets at each time shift τ , and the regions of highest correlation in each of the data sets. Figure
3.2 is the CC for the EEG spectral band alpha and the fMRI data with time shifts from zero to
2.8 seconds, shifted in increments of 0.2 seconds. Figure 3.3 shows the corresponding regions of
correlation of the EEG spectral alpha band.

The purpose of the tkCCA is to look at the CC’s for all spectral bands for time shifts of up to
eight seconds. This is the amount of time shift necessary for capturing the pattern of the HRF and
shifting any more than ten seconds will serve only to realign the data with a new epoch. Because
of this realignment, shifts modulus ten should be identical. The CC’s for all of the spectral bands
for time shifts from zero to eight seconds in shifts of 0.2 seconds are shown in Figure 3.4.

Ideally these results would follow a similar pattern to the HRF, starting with low correlation,
beginning to increase at about two seconds, and peaking somewhere between four and eight seconds.
The wild divergence of these results from the expected result could be a caused by any number
of things. A main challenge the current examples posed is that the data set used for testing this
method is small, one subject with 144 trails of flashes, each of these trials grouped into sets of twelve
and averaged. The result could improve once the other subjects’ data is added. Another potential
cause of the unexpected result is the unexpected solution to the inverse problem, as illustrated in
Figure 3.1. This figure places the alpha activity in the parietal lobe when the activity is expected
to be in the occipital lobe as that is the area of the brain corresponding to visual processing.
Modification of the parameters used in computing the inverse of the EEG by sLORETA could
easily change this result.
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Figure 3.3: This figure shows
the regions of correlation of the
EEG spectral band alpha with time
shifts from 0 to 2.8, shifted in incre-
ments of 0.2. The red regions are
those of high correlation with the
fMRI activation. The time shifts
whose corresponding images have
large regions of correlation corre-
spond to the time shifts which high
overall correlation, as seen in Fig-
ure 3.2.

3.4 Future Research

These methods have significant room for improvement as well as a large variety of application
potential. The same processing of the EEG and fMRI data can be done after altering the parameters
of the sLORETA inverse solution. This would show what methods have the best result.

Ideally these methods would be performed on simultaneously collected EEG and fMRI data.
This data has been collected and will be available for use after additional cleaning to remove noise
and artifacts the scanner causes. Using simultaneously collected data would allow for correlation
not only in response to the stimulus. As both modalities capture all brain activity, this activity
would be equivalent, unlike in non-simultaneously collected data where the brain will show different
activity during the same experiment performed at different times, just as each epoch of data is not
identical. This could lead to a higher correlation between the EEG and fMRI data.

Another future project would be to run this method of analysis using the new spectral bands
found using the Empirical Wavelet Transform, as described earlier in this report, instead of the
traditional spectral bands. This could provide any unknown amount of new insight to EEG-fMRI
coupling.

A final future project, the one motivating the transformation of EEG data into voxel-space, is
to use a spatial τ shift instead of a temporal τ shift. This would provide information about spatial
overlap of EEG and fMRI. This would be highly informative as there is a prevalent assumption
of direct overlap when that could easily not be the case. Using a spatial shift would show exactly
which relative shifting gives the highest correlation between the two data sets.
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Figure 3.4: The CC’s for all of the spectral bands. Note that the range of the y-axis changes for each graph.

36



Bibliography

[1] Felix Bießmann, Frank C. Meinecke, Arthur Gretton, Alexander Rauch, Gregor Rainer,
Nikos K. Logothetis, and Klaus-Robert Müller. Temporal kernel cca and its application in
multimodal neuronal data analysis. Machine Learning, 79(1-2):5–27, 2010.

[2] Bernard S. Chang and Daniel H. Lowenstein. Epilepsy. New England Journal of Medicine,
349(13):1257–1266, 2003. PMID: 14507951.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[4] Suzanne Corkin. What’s new with the amnesic patient hm? Nature Reviews Neuroscience,
3(2):153–160, 2002.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning, pages
273–297, 1995.

[6] Dona E Cragar, David TR Berry, Toufic A Fakhoury, Jean E Cibula, and Frederick A Schmitt.
A review of diagnostic techniques in the differential diagnosis of epileptic and nonepileptic
seizures. Neuropsychology Review, 12(1):31–64, 2002.

[7] Jean Daunizeau, Helmut Laufs, and Karl J. Friston. Eeg-fmri information fusion: biophysics
and data analysis. In C. Mulert and L. Lemieux, editors, Eeg - Fmri: Physiological Basis,
Technique, and Applications, pages 511–526. Springer Berlin Heidelberg, 2010.

[8] Philip Dickinson and Karl J Looper. Psychogenic nonepileptic seizures: a current overview.
Epilepsia, 53(10):1679–1689, 2012.

[9] PK Douglas, D Moyer, and MS Cohen. Colocalizing EEG and fMRI in space. In 19th Annual
Meeting. Human Brain Mapping, 2013.

[10] Andrew D. Engell, Scott Huettel, and Gregory McCarthy. The fMRI {BOLD} signal
tracks electrophysiological spectral perturbations, not event-related potentials. NeuroImage,
59(3):2600 – 2606, 2012.
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