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Abstract

Gang on gang violence is a prevalent problem in Los Angeles. In this
paper a point process method is presented for simulating gang on gang
crimes. The Hawkes process, a self exciting point process, is introduced
as a temporal model for crimes between pairs of gangs. This model is
expanded upon to simulate crimes not only temporally but also spatially.
Following this, we introduce a method to assign directionality to these
crimes. Finally, we present a model to simulate directed crimes in the 33
gang system of the policing district Hollenbeck, Los Angeles.

Introduction

Gang violence has been a significant problem in parts of Los Angeles since the
1940s. The policing district Hollenbeck, east of downtown Los Angeles is one
of the most violent Los Angeles policing districts, despite having a total area of
only 15.2 square miles[7].

Previous research has shown that inter-gang attack patterns follow a self-
exciting model: a gang is likely to retaliate against a gang that has attacked it,
and that retaliation is likely to be temporally near the inciting event [1].

We worked with a set of data from the Hollenbeck Policing Area in Los
Angeles, CA containing a list of gang-related crimes from November 1999 to
September 2002. Each crime was associated with a suspect, victim, location,
and time. This data set contained information on 1206 crimes, but due to
incomplete information about many of the crimes, the majority of our work was
done on only 358 crimes.
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1 Temporal Hawkes Process

The Hawkes Process is a self-exciting point process developed to model seismic
activity, with applications to other processes in which an event increases the like-
lihood of events following it[4]. In this paper, the events are inter-gang attacks,
where one crime is likely to excite either retaliations or repeat victimizations.
This activity is described by the rate function [3]

λ(t) = µ+ k0

∑
t>ti

g(t− ti;ω). (1)

µ Background Rate
k0 Scaling Factor
ω Rate of Decay

g(t − ti;ω) is a function that decays as t − ti becomes greater. In modeling
inter-gang crimes, Egesdal et al. used the function

g (t− ti;ω) = ωe−ω(t−ti). (2)

The rate function λ(t) is the expected rate at which events occur. µ is the
background rate, the rate at which events are expected to occur if there is no
other activity. k0 is a scaling factor for the effect of a crime, and ω is the rate of
decay for a crime’s effect. A higher µ value causes an overall higher activity rate,
while a higher k0 causes an event to generate more offspring. A lower ω value
causes crimes to have a longer effect time and therefore causes less clustering
and a more uniform distribution.

The crimes between pairs of gangs in strong rivalries (greater than 20 attacks
over the 3 year period) often revealed temporal clustering as shown in Fig. 1.
Plotted beneath the events is a rate function λ(t). The parameters for µ, k0, and

Figure 1: Crimes over time between El Sereno Locke Street and Lowell Street
and value of λ(t).

ω were approximated using maximum likelihood estimation. The log likelihood
is

log L =
∑
c

log λ (tc)−
∫
T

λ (t) dt, (3)

where tc is a time at which a crime was committed [5].
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2 Extending the Temporal Hawkes Process

2.1 Spatio-Temporal Hawkes Process

To model locations as well as times of crimes, we added a spatial component to
the rate function

λ (x, y, t) = µ (x, y) + k0

∑
c

g (t− tc;ω)h (x− xc, y − yc;σ) . (4)

This adds two concepts to the temporal Hawkes Process. This new process
has background rate µ(x, y) that varies by location but not by time. Addition-
ally, a term h(x, y;σ) is added causing the effect of a crime to decay over space
is added. The function used for this was

h (x− xc, y − yc;σ) =
1

2πσ2
e−

1
2 ·

(x−xc)2+(y−yc)2

σ2

This creates a Gaussian distribution centered at each crime. Because this dis-
tribution is scaled by g (t− tc;ω), this makes the effect of a crime decay over
both time and space. The value for σ represents the distance over which we
expect a crime to influence future activity.

The background rate that was used was a scaled bimodal distribution com-
prised of two Gaussians. The background rate between gangs g and h is

µ (x, y) = Ca
1

2πσaxσay
e
− 1

2

(
(x−āx)2

σ2
ax

+
(y−āy)2

σ2
ay

)

+Cb
1

2πσbxσby
e
− 1

2

(
(x−b̄x)2

σ2
bx

+
(y−b̄y)2

σ2
by

)
. (5)

The values used for (x̄g, ȳg) and (x̄h, ȳh) were the mean locations of all crimes
that gangs g and h were involved in (not necessarily with each other), respec-
tively. (σgx, σgy) and (σhx, σhy) were the corresponding standard deviations.
These were chosen such that the distributions would represent the regions in
which the gangs were active. The values for C1 and C2 determine the rate of
background activity. The ratio of these values describes how important one
distribution is compared to the second; if most of the activity was located in
the territory belonging to gang h, then Ch would be much larger than Cg. The
parameters used in this are as follows:

2.1.1 Determining Parameters

We estimated parameters for this model using maximum likelihood estimation,
as in the temporal Hawkes Process. The log likelihood is

log L =
∑
c

log λ (xc, yc, tc)−
∫

Ω

λ (x, y, t) dxdydt.
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Figure 2: An example of a bimodal Gaussian distribution.

Parameter, Function, or Constant Description
λ(x, y, t) Rate Function
µ(x, y) Background Rate
k0 Scaling Factor
ω Decay Rate
σ Range of Crime Effect

C1 and C2 Background Scaling Factors
(x̄g, ȳg) Average Location of all g Crimes

(σgx, σgy) Standard Deviation of all g Crimes

Figure 3: Parameters and functions for spatio-temporal Hawkes Process.

However, if we simply estimate the values using this, the likelihood is maxi-
mized for vanishingly small values of σ. In this situation, the effect of a crime
is confined to a negligible area and as such, almost all crimes are background
events. This means that the events are not clustered and when simulating crimes
using these numbers, the crimes are distributed spatially like the background
rate µ and temporally as a uniform distribution.

However, our data does not support this sort of activity. To prevent this, we
add a penalty term to the function we are maximizing [6]. This penalty term
penalizes for high gradients in space (but not time):

η

∫
T

∫∫
X,Y

||∇r (x, y) ||2 dxdy dt.
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where
r (x, y) = k0

∑
c

g (t− tc;ω)h (x− xc, y − yc;σ) ,

where η is simply a scaling factor determining to what extent this penalizing
term is influential. Thus the equation we maximize to estimate parameters is∑

c

log λ (xc, yc, tc)−
∫

Ω

λ (x, y, t) dxdydt

− η
∫
T

∫∫
X,Y

||∇r (x, y) ||2 dxdy dt. (6)

This penalizing term has the effect of making it unlikely that the estimated
parameters describe crimes that sharply increase the rate at very small distances.
Therefore, for sufficiently large values of η, the expression is no longer maximized
with vanishingly small values of σ.

The following parameters were estimated with a η value of 100.

Estimated Parameter Summary Table
Rivalry k0 w σ C1 C2

Loc-Low 0.122 6.117× 10−2 0.655 1.374× 10−3 1.971× 10−2

Clo-Eas 0.040 0.162 2.855 1.171× 10−2 1.865× 10−2

Lin-Eas 6.983 1.888× 10−5 0.310 1.315× 10−2 2.487× 10−8

KAM-Sta 1.288× 10−3 53.37 0.394 7.450× 10−4 1.780× 10−2

Tin-Sta 7.372× 10−2 4.966× 10−2 1.048 1.415× 10−2 1.794× 10−10

MCF-ELA 1.005× 10−2 0.308 0.294 1.890× 10−2 1.018× 10−10

VNE-Opa 5.450× 10−2 0.165 0.500 1.085× 10−10 1.778× 10−2

VNE-8th 8.159× 10−3 59.48 0.947 3.078× 10−10 1.640× 10−2

TMC-Cua 6.967× 10−3 0.677 0.327 8.082× 10−4 2.513× 10−2

Figure 4: Parameters for nine largest rivalries. Parameters were estimated with
distance measured in hundredths of degrees latitude and longitude and time
measured in days. 1/100 of a degree latitude is approximately 0.69 miles.

In Fig. 4 we see that the estimated parameters are still sometimes unrealistic.
For example, the estimated value for k0 for the Lincoln Heights and Eastlake
rivalry indicates that in the day following a crime, the rate of crimes per day
per unit area is increased by nearly 7.

In Fig. 5 we see the estimated values for the parameters for this rivalry for
multiple values of η. It is evident that in this case, while the penalty term affects
σ in a positive way, it does not necessarily result in realistic values for the other
parameters.

2.1.2 Simulating Data

We used a branching process to simulate data with the previously described
parameters. While we were able to consistently produce a number of crimes
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Estimated Parameter Between Lincoln Heights and Eastlake
η k0 w σ C1 C2

.01 582.8 1.751× 10−6 0.184 8.343× 10−3 5.873× 10−8

1 0.103 9.081× 10−2 0.249 1.270× 10−2 2.911× 10−10

10 228.6 2.206× 10−6 0.265 1.031× 10−2 3.830× 10−9

1000 6.898 2.327× 10−6 0.319 1.422× 10−2 6.006× 10−9

1010 1.905× 10−9 3.184× 10−2 0.523 1.437× 10−2 2.391× 10−10

1020 8.052× 10−5 8.180× 10−15 1.219 1.437× 10−2 2.092× 10−9

Figure 5: Estimated parameters for Lincoln Heights and Eastlake rivalry for
various η values.

similar to those in our data, the parameters often produced a very high number
of background crimes and a very low number of offspring crimes.

Spatially, the distribution of simulated crimes reflected that of the actual
crimes, as in Fig. 6. This is expected, because background crimes are dis-
tributed in the same form as the background rate µ(x, y), which was based on
the distribution of the actual crimes.

Figure 6: Simulated vs. actual crimes between El Sereno Locke Street and Lowell
Street. Blue crimes are actual events, red are simulated. The black dots are all
complete events in the data.
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Temporally, the simulated crimes appear to be slightly less clustered than
the actual crimes in Fig. 7. However, in fact the simulated data has 23 (out
of a total of 28) crimes that are background events; only 5 of the events were
offspring events. Thus the “clustering” we see is mostly the result of a Poisson
process not distributing events equally in time.

Figure 7: Simulated vs. actual crimes between El Sereno Locke Street and Lowell
Street. Blue crimes are actual events, red are simulated. There are 28 simulated
crimes (23 background) and 27 actual crimes. These crimes were simulated using
the parameters from Fig. 4

This result seems to challenge the effectiveness of using a spatio-temporal
Hawkes Process to model the gang-on-gang activity. However, this may be
the result of h(x, y;σ) not accurately representing the spatial effect of a crime.
Additionally, while it appears that crimes are clustered in time, we currently
do not have a way of determining whether points temporally in a cluster are
necessarily related to the other events in the cluster, so some of the clustering in
the data may not actually indicate the level of background and excited activity
that is initially apparent.

2.2 Directional Hawkes Process

Another extension of the temporal Hawkes Process is identifying a suspect and
victim with the crime. Here we address this for crimes between a single pair of
gangs.
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When a gang has been attacked, they have a tendency to retaliate against
the offender. Additionally, some gangs repeatedly victimize other gangs. To
model these trends, we add directionality to the crimes between two gangs.
Instead of viewing events between two gangs as identical, we separate them into
events where gang a attacked gang b and gang b attacked gang a. This enables
us to gain more insight into the dynamics of the two gangs in order to simulate
the crimes and shows us which gang commits crimes more frequently. The rate
function for gang a attacking gang b is as follows:

λa→b (t) = µa→b + r0

N∑
tc<t

g

(
t− tc

b→a
;ω

)
+ s0

M∑
td<t

g

(
t− td

a→b
; ν

)
. (7)

The self-excited component of the original Hawkes process is replaced with
terms accounting for retaliatory attacks and repeat victimizations. The second
term is the retaliatory component. This boosts the crime rate by a r0 when a
gang has been attacked, and decays exponentially over time at a rate of ω. The
third term is the repeat victimization component. This increases the crime rate
by s0 when a gang has attacked the other and decays exponentially over time at
a rate of ν. A high r0 corresponds to a situation in which gang a often commits
crimes in retaliation to crimes by gang b, and a high s0 corresponds to a situation
in which gang a repeatedly victimizes gang b. A small ω and ν cause the crime
rate to decay slowly over time and therefore crimes will continue to occur after
the attacks. To obtain the parameters for the Directional Hawkes process, we fit
the parameters to the actual data using the maximum log likelihood estimation.

Estimated Parameter Table
Rivalry r0 s0 ω ν µ
Loc-Low 8.568× 10−2 0.343 0.665 2.980× 10−2 2.764× 10−3

Low-Loc 0.462 0.463 8.738× 10−2 6.834× 10−2 7.199× 10−3

Clo-Eas 0.273 5.804× 10−2 0.391 4.265 1.228× 10−2

Eas-Clo 5.114× 10−2 0.396 4.491 5.419× 10−2 7.720× 10−3

VNE-8th 0.326 0.135 3.452× 10−2 4.502 2.588× 10−3

8th-VNE 0.179 0.116 1.742× 10−2 2.539× 10−2 7.275× 10−3

Figure 8: Estimated parameters for three large rivalries.

Using the parameters that were obtained by the maximum log likelihood
estimation, we simulated the directional Hawkes process using the marked point
process as in Fig. 9. The simulation accurately reflects the relationship between
the two gangs. Locke Street has a higher crime rate than Lowell Street in
the actual data, and is reflected in the simulation. The self-exciting nature
of the Hawkes process is also apparent in the short inter-attack times in both
diagrams. This simulation is a useful tool in modeling gang activity between
pairs of gangs because we are able to obtain accurate parameter estimations to
produce a model that resembles the actual data.
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Figure 9: Actual vs simulated crime rates for El Sereno Locke St. and Lowell
St. The blue represents crimes committed by Lowell St., red represents crimes
committed by El Sereno Locke St.

3 Combining Spatial and Directional Models

3.1 Sequential Combination

Now that we are able to simulate crimes with location and crimes with direction-
ality, we combine the ideas to attempt to simulate crimes with time, location,
and direction for pairs of gangs. One way to combine these ideas is to simulate
crimes in time and space, and then give these crimes directionality.

To do this, we first estimate parameters and simulate crimes as described in
Section 2.1. This process provides us with a set of crimes, each having a time
and location. We then identify for each crime which gang was the suspect and
which was the victim.

In order to assign a perpetrator to each crime, we consider the rate at which
each gang is likely to attack the other. Here we use the rate function described
in Eq. 7 and do not use our spatial data. Using this equation, we have a rate
for crimes in either direction at any time for which we know the direction of all
previous crimes. We start at the initial simulated crime and probabilistically
assign a directionality to it using the rate functions:

P (a attacked b| t;H) =
λa→b (t)

λa→b (t) + λb→a (t)
, (8)

where H is the history of crimes between gangs a and b. For the initial crime,
there are no previous crimes, so the values of the rate functions are simply the
background rates. We then inspect the second crime and find the rates for each
direction and assign a perpetrator for that crime. We continue to go through
the crimes chronologically until all crimes have been assigned a direction.

Using this method we may attempt to simulate data that mimics the patterns
we see in the real data. An example simulation is shown in Fig. 11.
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Figure 10: Method for simulating crimes over time and space with directionality.

Figure 11: Directions added to simulated crimes between El Sereno Locke St.
and Lowell St. The actual crimes appear on the top and simulated crimes on
the bottom. Crimes in which Lowell St. was the suspect are shown in blue,
while those in which El Sereno Locke St. was the suspect are shown in red.

3.2 Simultaneous Combination

To further investigate the effects of retaliatory and repeated crimes, we incor-
porate the spatial component in 4 to the temporal directional Hawkes Process.

λa→b (x, y, t) = µa→b (x, y) + r0

N∑
tc<t

g

(
t− tc

b→a
;ω

)
1

2πσ2
e−

(x−xc)2+(y−yc)2

2σ2

+ s0

M∑
td<t

g

(
t− td

a→b
; ν

)
1

2πγ2
e
− (x−xd)2+(y−yd)2

2γ2 . (9)

The variable background rate used in this model is similar to as in Eq. 5. The
values for (x̄a, ȳa) and (x̄b, ȳb) are the mean locations of the crimes gangs a and
b were involved in. However, (σax, σay) is the standard deviation of the crimes
that gang a committed against gang b, and (σbx, σby) is the standard deviation
of the crimes that gang b committed against gang a. This reduces the influence
on the background rate to only crimes in specific direction. The retaliatory
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(a) Actual locations of crimes (b) Simulated locations of crimes

Figure 12: Actual vs simulated crime locations of Clover and Eastlake. Blue
dots are events in which Clover was the suspect, and red dots are events in
which Eastlake was the suspect.

and repeated victimization terms now decay over space around the previous
crime locations. σ is the standard deviation of the Gaussian distribution that
defines the increased crime rate around locations where gang b attacked gang
a. Similarly, γ is the standard deviation of the Gaussian distribution that
defines the increased crime rate around locations where gang a attacked gang
b. Higher values for σ and γ cause events to have influence at greater distances.
Using the maximum penalized likelihood estimation we determined values for
the parameters. The locations of crimes between Clover and Eastlake were
simulated using the marked point process.

Fig. 13 shows histograms of the distances between Clover’s mean location
(x̄, ȳ) and each event where Clover attacked Eastlake. The left is the histogram
for the actual data and the right is the simulated data. It is apparent that
they share the same pattern. The most crimes are committed near Clover’s
gang center and as they travel further away the crimes decrease, and increase
again as they travel even further away. This simulation works great for gangs
which we have many data points for like these two gangs. However due to the
small amount of data for each pair of gangs, the parameter estimations were not
completely accurate which skewed the simulations to some extent. With more
data the parameters will better fit the actual data and better simulate the data.

4 Pairwise Model Comparison

We discussed two models for simulating directed events between pairs of gangs.
The model discussed in Section 3.2 combines both spatial and directional

ideas into a single equation, which is preferable for estimating parameters when
we expect all parameters to have an effect on each other. However, this model
requires estimating 8 parameters for each direction, for a total of 16 parame-
ters. Unfortunately, our data only contains 7 pairs of gangs with more than 16

11



Figure 13: Histograms of the distances between Clover’s mean location and each
crime committed by Clover. Left is the actual inter-attack distances, and the
right is the simulated.

attacks between them, only 3 of which have greater than 8 attacks in both direc-
tions. Given this, we cannot assume that the parameters we estimate accurately
describe the system.

The model discussed in Section 3.1, while not allowing for interaction be-
tween directional and spatial components, does not require simultaneous esti-
mation of as many parameters: the spatial process requires 5 parameters and
each of the directional processes require 5 additional parameters. While this is
still a large number of parameters given our very limited data set, we are more
likely to get meaningful spatial parameters for the largest rivalries.

For very limited data sets, the first model is preferable due to its requiring
fewer parameters. However, if we were able to work with a much larger data
set, the second model may produce better estimations due to its ability to allow
location to influence direction.

Multi-Gang System

In order to simulate crimes over all of Hollenbeck, a system of rivalries must be
constructed. As shown in equation (4), our Hawkes Process is going to be one of
space and time, with a spatially-variant background rate and a spatio-temporal
self exciting function.

Crimes are produced at the crime rate λ(x, y, t). Each crime is distributed
throughout space and time and is associated with two gangs; an attacking gang
and a victim gang.

In order to model this system of crimes, we implement a cluster or branching
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process as proposed by Hawkes and Oakes [2]. In simulating events, a branch-
ing process first generates background crimes at the background rate over the
entire time domain. The number of background crimes simulated is a Pois-
son random variable with parameter

∫
Ω
µ(x, y). These crimes are distributed

uniformly through time. We then inspect each background crime to determine
whether additional retaliatory or repeat crimes occur due to it. Each crime
generates a Poisson random variable with parameter k0 of offspring crimes. Af-
ter inspecting each background crime, these ‘offspring crimes’ are themselves
inspected to determine if more offspring crimes are created in the same way.

Figure 14: An example of a temporal branching point process.

Figure 14, shows an example of such a branching process over time. For dif-
ferent points through time, random background or ‘level 0’ events are generated.
Each ‘level 0’ event then has the opportunity to create ‘level 1’ offspring events
later in time, and then each ‘level 1’ event has the ability to create additional
offspring events. Likewise, our model’s crimes may branch out to create more
crimes, which can create more crimes, and so forth. For realistic parameters,
this process terminates: a Poisson random variable with parameter k0 will usu-
ally be 0 and very rarely greater than one and any offspring crimes generated
outside the time domain are disregarded.

To simulate events, we first generate the background crimes for the region, at
a rate equal to the integral of µ(x, y) over all space and time. These background
crimes are then uniformly distributed throughout time, and distributed with
respect to a multimodal normal distribution in space as in Eq. 10.

µ(x, y) =
∑
g

Cg

2πσgxσgy
e
− 1

2 (
(x−x̄g)2

σ2
gx

+
(y−ȳg)2

σ2
gy

)
(10)

The multimodal normal distribution is made up of a sum of scaled normal
distributions with a mode at each gang center. These distributions are placed
such that they center around each gang’s center. These gang centers are either
gang bases supplied to us by the L.A.P.D. or approximated as the average of all
the locations of crimes that that gang was involved in. Each distribution also
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had a standard deviation equal to the standard deviation of all the crimes it
was involved in. A scaling factor Cg was estimated for each distribution as well,
which affected the number of background crimes associated with that gang’s
‘territory’. The quantity of background crimes generated, the integral of µ(x, y)
over all space and time, is reduced to the sum of all scales Cg as each normal
distribution integrates to 1.

Parameter Explanation

Cg Normal distribution scaling factors
(x̄g, ȳg) Gang centers

(σgx, σgy) Gang standard deviations

Figure 15: µ(x, y) Equation Parameters

In some instances, data given identified a single gang with two gang bases.
In such a case, two normal distributions were used instead of one, with separate
centers and scaling factors but the same previously described standard deviation.

Figure 16: A probability density map of the background crime rate µ(x, y) of
Hollenbeck.

Background crimes have now been simulated and distributed in space and
time. Now these background crimes must be assigned to a pair of gangs. Each
possible pairing of gangs is examined and a we determine a likelihood that a
crime is identified with that pair.

14



`
a,b

(x, y) =
Ca

2πσxaσya
e
− 1

2 (
(x−x̄a)2

σ2
xa

+
(y−ȳa)2

σ2
ya

)
+

Cb

2πσxbσyb
e
− 1

2 (
(x−x̄b)

2

σ2
xb

+
(y−ȳb)

2

σ2
yb

)
(11)

The likelihood function, `
a,b

(x, y) is comprised of two scaled bimodal distri-

bution. This distribution uses the same centers, standard deviations and scaling
factors that identified with the two gangs in equation (10). A pair of gangs is
assigned probabilistically, such that

P (c is identified with (a, b)|xc, yc) =

`
a,b

(xc, yc)∑
g

∑
h<g

`
g,h

(xc, yc)
. (12)

Here, the nested sums in the denominator sum over all possible pairings of
gangs.

The background step of our process is now complete. All of of the background
crimes have been generated, distributed in space and time and assigned gangs.
Each background crime is now generates offspring crimes at a rate k0 in equation
(4). The offspring crimes are then distributed spatially and temporally with
respect to equation (13).

g(x, y, t) =
ω

2πσ2
e−

(x−x̄c)2+(y−ȳc)2

2σ2 −ω(t−ti) (13)

As described in Eq. (13), offspring crimes are distributed with an exponential
decay in time, and a normal distribution in space centered around their ancestor
crime. These offspring crimes are assigned the same pair of gangs as their
ancestor, as repeat and retaliatory crimes would be between the same pair of
gangs. This process continues after all background crimes are inspected for
offspring crimes, and inspects all offspring crimes for offspring crimes, until all
crimes have been inspected.

All crimes have been generated, distributed in time and space and are as-
sociated with a pair of gangs. The final step in this model is to incorporate a
directionality to all crimes. That is, if a background crime has been established
to be between gang i and gang j, it is not known whether gang i attacked gang
j or gang j attacked gang i. We apply equation (8) for each crime to get this
directionality.

All crimes have now been generated, distributed and fully labeled. The
simulation is complete.

We were able to simulate crimes for all pairs of gangs in Hollenbeck by cre-
ating a global system. This global system modeled the Hawkes Point Process
through a branching process. We used a multimodal probability distribution,
µ(x, y) over space as our background rate. Every offspring crime was exponen-
tially distributed in time and normally distributed in space. These crimes were
associated with a pair of gangs: a victim and an attacker.
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Figure 17: A simulation over all of Hollenbeck.

Table 1: Crimes Generated

Type Amount

Total Real 1206
Total Simulated 1233

Background Simulated 1208
Self-Excited Simulated 25

Conclusion

We extended the temporal Hawkes Process to model crimes with locations and
times and to model crimes with directionality and times. We used maximum
likelihood estimation to find parameters for both of these models, but included
in the spatio-temporal parameter estimation a penalizing term to ensure non-
negligible σ values. We then combined these two models to produce two different
models which both simulated crimes with location, direction, and time. Unfor-
tunately, due to the very limited size of our data set, we were unable to reliably
estimate accurate parameters for this model.

Additionally, we created a global system to simulate all pairs of gangs in
Hollenbeck. This model similarly had difficulties with the amount of available
data.

There was a persistent problem with estimating a low σ value, which suggests
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that crimes may not be related spatially or may only be related very rarely
spatially. If this model with spatial dependence is pursued, it may be advisable
to consider other ways that a crime would affect the rate at various locations.

Future work on this subject could include a different spatial effect of crimes
as mentioned above. In addition, a new method for determining the background
rate may allow for better determination of the remaining parameters. Any and
all of these methods could be more accurately implemented and tested with
access to additional data.
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