Problem 1 True or false?

- (a) The integral $\int_0^{2\pi} \int_0^1 \int_r^1 dz dr d\theta$ represents the volume of a right cone.
- (b) The jacobian of the transformation given by $x = u^2 2v$, y = 3v 2uv is given by $-4u^2 + 6u + 4v$.

 Solution. False.
- (c) Is the vector field $\vec{F} = \langle x^2y, xy^2 \rangle$ conservative? Solution. False.
- (d) The divergence of a vector field is a vector field. *Solution*. False.
- (e) If $\nabla \times \vec{F} = 0$ then \vec{F} is conservative. Solution. False.

Problem 2 Evaluate the integral

$$\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} dz dy dx$$

Solution. $\frac{2\pi}{3}$

- **Problem 3** Calculate $\iiint_B \sqrt{x^2 + y^2} dV$ where B is the region bounded above by the half sphere $x^2 + y^2 + z^2 = 9$ with $z \ge 0$ and below by the cone $z^2 = 3(x^2 + y^2)$. Solution. $\frac{81\pi}{8} \left(\frac{\pi}{3} \frac{\sqrt{3}}{2} \right)$
- **Problem 4** Use a change of variables to evaluate the integral $\iint_R (x-y)e^{x^2-y^2}dA$ where R is the region bound by the lines $x+y=1, \ x+y=3$ and curves $x^2-y^2=-1, \ x^2-y^2=1.$ Solution. 2/3e
- **Problem 5** Let E be the region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the sphere $x^2 + y^2 + z^2 = z$. Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:
 - (a) $d\rho d\phi d\theta$
 - (b) $d\phi d\rho d\theta$

Solution. $\pi/8$

Problem 6 Let $\vec{F} = \langle 2x \ln(y), \frac{x^2}{y} + z^2, 2yz \rangle$ and let C be the curve parameterised by $\vec{r}(t) = \langle t^2, t, t \rangle$ for $1 \le t \le e$. Calculate $\int_C \vec{F} \cdot d\vec{r}$

- (a) without using the Fundamental Theorem of Line Integrals and
- (b) using the Fundamental Theorem of Line Integrals.

Solution. $e^4 + e^3 - 1$.

Problem 7 Calculate the line integral $\int_C (x^2 + y^2 + z^2) ds$ where C is the part of the helix parameterised by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le 2\pi$.

Solution.
$$\sqrt{2}\left(2\pi + \frac{8\pi^3}{3}\right)$$

- **Problem 8** A solid Q has the form $D \times I$ where D is some finite region in the xy-plane and I = [a, b] is a finite interval. The density $\rho(x, y, z)$ of the solid Q doesn't depend on the variable z. Show that the center of mass of Q lies on the plane $z = \frac{a+b}{2}$.
- Problem 9 True of False?
 - (a) If C is parameterised by $\vec{r}(t) = (t, t)$ for 0 < t < 1, then

$$\int_C xyds = \int_0^1 t^2 dt.$$

Solution. False.

- (b) If vector field \vec{F} has zero curl on the open and connected region D, then line integrals of \vec{F} are path independent on D. Solution. False.
- (c) If a vector field \vec{F} is path independent on an open connected region D, then the vector field \vec{F} is conservative on D.

 Solution. True.
- **Problem 10** Use a change of variables to calculate $\iint_R (x^2 + 25y^2)^2 dA$ where R is the ellipse with boundary $x^2 + 25y^2 = 1$.

 Solution. $\pi/15$
- **Problem 11** Find a potential function for $\vec{F} = \langle 12x^2, \cos y \cos z, 1 \sin y \sin z \rangle$. Solution. $f(x, y, z) = 4x^3 + \sin y \cos z + z$
- **Problem 12** Compute $\int_C \cos x \cos y dx \sin x \sin y dy$ where C is parameterised by $\vec{r}(t) = (t, t^2)$ for $0 \le t \le 1$.

 Solution, $\sin(1)\cos(1)$
- **Problem 13** Prove that if \vec{F} is a conservative vector field in \mathbb{R}^3 with continuously differentiable component functions, then $\nabla \times \vec{F} = 0$.
- **Problem 14** Let $\vec{F} = \left\langle \frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2} \right\rangle$, the vortex field.

- (a) Consider the function $g(x,y) = \arctan(x/y)$. Show that $\vec{F} = \nabla g$.
- (b) Is \vec{F} conservative?
- (c) Consider the path P that is the two line segments from (1,1) to (1,7) and then to (2,2). Evaluate $\int_P \vec{F} \cdot d\vec{r}$.