Problem 1 True or false?
(a) The integral $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1} d z d r d \theta$ represents the volume of a right cone.
(b) The jacobian of the transformation given by $x=u^{2}-2 v, y=3 v-2 u v$ is given by $-4 u^{2}+6 u+4 v$.
(c) Is the vector field $\vec{F}=\left\langle x^{2} y, x y^{2}\right\rangle$ conservative?
(d) The divergence of a vector field is a vector field.
(e) If $\nabla \times \vec{F}=0$ then \vec{F} is conservative.

Problem 2 Evaluate the integral

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} d z d y d x
$$

Problem 3 Calculate $\iiint_{B} \sqrt{x^{2}+y^{2}} d V$ where B is the region bounded above by the half sphere $x^{2}+y^{2}+z^{2}=9$ with $z \geq 0$ and below by the cone $z^{2}=3\left(x^{2}+y^{2}\right)$.
Problem 4 Use a change of variables to evaluate the integral $\iint_{R}(x-y) e^{x^{2}-y^{2}} d A$ where R is the region bound by the lines $x+y=1, x+y=3$ and curves $x^{2}-y^{2}=-1$, $x^{2}-y^{2}=1$.

Problem 5 Let E be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=z$. Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:
(a) $d \rho d \phi d \theta$
(b) $d \phi d \rho d \theta$.

Problem 6 Let $\vec{F}=\left\langle 2 x \ln (y), \frac{x^{2}}{y}+z^{2}, 2 y z\right\rangle$ and let C be the curve parameterised by $\vec{r}(t)=\left\langle t^{2}, t, t\right\rangle$ for $1 \leq t \leq e$. Calculate $\int_{C} \vec{F} \cdot d \vec{r}$
(a) without using the Fundamental Theorem of Line Integrals and
(b) using the Fundamental Theorem of Line Integrals.

Problem 7 Calculate the line integral $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ where C is the part of the helix parameterised by $\vec{r}(t)=\langle\cos t, \sin t, t\rangle$ for $0 \leq t \leq 2 \pi$.

Problem 8 A solid Q has the form $D \times I$ where D is some finite region in the $x y$-plane and $I=[a, b]$ is a finite interval. The density $\rho(x, y, z)$ of the solid Q doesn't depend on the variable z. Show that the center of mass of Q lies on the plane $z=\frac{a+b}{2}$.
Problem 9 True of False?
(a) If C is parameterised by $\vec{r}(t)=(t, t)$ for $0 \leq t \leq 1$, then

$$
\int_{C} x y d s=\int_{0}^{1} t^{2} d t .
$$

(b) If vector field \vec{F} has zero curl on the open and connected region D, then line integrals of \vec{F} are path independent on D.
(c) If a vector field \vec{F} is path independent on an open connected region D, then the vector field \vec{F} is conservative on D.
Problem 10 Use a change of variables to calculate $\iint_{R}\left(x^{2}+25 y^{2}\right)^{2} d A$ where R is the ellipse with boundary $x^{2}+25 y^{2}=1$.
Problem 11 Find a potential function for $\vec{F}=\left\langle 12 x^{2}, \cos y \cos z, 1-\sin y \sin z\right\rangle$.
Problem 12 Compute $\int_{C} \cos x \cos y d x-\sin x \sin y d y$ where C is parameterised by $\vec{r}(t)=$ $\left(t, t^{2}\right)$ for $0 \leq t \leq 1$.

Problem 13 Prove that if \vec{F} is a conservative vector field in \mathbb{R}^{3} with continuously differentiable component functions, then $\nabla \times \vec{F}=0$.
Problem 14 Let $\vec{F}=\left\langle\frac{y}{x^{2}+y^{2}}, \frac{-x}{x^{2}+y^{2}}\right\rangle$, the vortex field.
(a) Consider the function $g(x, y)=\arctan (x / y)$. Show that $\vec{F}=\nabla g$.
(b) Is \vec{F} conservative?
(c) Consider the path P that is the two line segments from $(1,1)$ to $(1,7)$ and then to (2,2). Evaluate $\int_{P} \vec{F} \cdot d \vec{r}$.

