Problem 1 True or false?

- (a) The integral $\int_0^{2\pi} \int_0^1 \int_r^1 dz dr d\theta$ represents the volume of a right cone.
- (b) The jacobian of the transformation given by $x = u^2 2v, y = 3v 2uv$ is given by $-4u^2 + 6u + 4v$.
- (c) Is the vector field $\vec{F} = \langle x^2 y, xy^2 \rangle$ conservative?
- (d) The divergence of a vector field is a vector field.
- (e) If $\nabla \times \vec{F} = 0$ then \vec{F} is conservative.

Problem 2 Evaluate the integral

$$\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} dz dy dx$$

Problem 3 Calculate $\iiint_B \sqrt{x^2 + y^2} dV$ where *B* is the region bounded above by the half sphere $x^2 + y^2 + z^2 = 9$ with $z \ge 0$ and below by the cone $z^2 = 3(x^2 + y^2)$.

Problem 4 Use a change of variables to evaluate the integral $\iint_R (x-y)e^{x^2-y^2}dA$ where R is the region bound by the lines x + y = 1, x + y = 3 and curves $x^2 - y^2 = -1$, $x^2 - y^2 = 1$.

- **Problem 5** Let *E* be the region bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the sphere $x^2 + y^2 + z^2 = z$. Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:
 - (a) $d\rho d\phi d\theta$
 - (b) $d\phi d\rho d\theta$.

Problem 6 Let $\vec{F} = \langle 2x \ln(y), \frac{x^2}{y} + z^2, 2yz \rangle$ and let C be the curve parameterised by $\vec{r}(t) = \langle t^2, t, t \rangle$ for $1 \le t \le e$. Calculate $\int_C \vec{F} \cdot d\vec{r}$

- (a) without using the Fundamental Theorem of Line Integrals and
- (b) using the Fundamental Theorem of Line Integrals.
- **Problem 7** Calculate the line integral $\int_C (x^2 + y^2 + z^2) ds$ where *C* is the part of the helix parameterised by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le 2\pi$.
- **Problem 8** A solid Q has the form $D \times I$ where D is some finite region in the xy-plane and I = [a, b] is a finite interval. The density $\rho(x, y, z)$ of the solid Q doesn't depend on the variable z. Show that the center of mass of Q lies on the plane $z = \frac{a+b}{2}$.

Problem 9 True of False?

(a) If C is parameterised by $\vec{r}(t) = (t, t)$ for $0 \le t \le 1$, then

$$\int_C xyds = \int_0^1 t^2 dt.$$

- (b) If vector field \vec{F} has zero curl on the open and connected region D, then line integrals of \vec{F} are path independent on D.
- (c) If a vector field \vec{F} is path independent on an open connected region D, then the vector field \vec{F} is conservative on D.

Problem 10 Use a change of variables to calculate $\iint_R (x^2 + 25y^2)^2 dA$ where R is the ellipse with boundary $x^2 + 25y^2 = 1$.

- **Problem 11** Find a potential function for $\vec{F} = \langle 12x^2, \cos y \cos z, 1 \sin y \sin z \rangle$.
- **Problem 12** Compute $\int_C \cos x \cos y dx \sin x \sin y dy$ where C is parameterised by $\vec{r}(t) = (t, t^2)$ for $0 \le t \le 1$.
- **Problem 13** Prove that if \vec{F} is a conservative vector field in \mathbb{R}^3 with continuously differentiable component functions, then $\nabla \times \vec{F} = 0$.
- **Problem 14** Let $\vec{F} = \left\langle \frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2} \right\rangle$, the vortex field.
 - (a) Consider the function $g(x, y) = \arctan(x/y)$. Show that $\vec{F} = \nabla g$.
 - (b) Is \vec{F} conservative?
 - (c) Consider the path P that is the two line segments from (1, 1) to (1, 7) and then to (2, 2). Evaluate $\int_{P} \vec{F} \cdot d\vec{r}$.