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FAQ
1. What’s in this document?

20 practice problems for the Math 32B Midterm, mostly written by myself.

2. Are these questions representative of the content/difficulty/format/etc. of the midterm?
I make no such guarantees and had no such intentions when making this worksheet.
These questions are only designed to be instructive, i.e. so that solving them requires
understanding some important concept from the course.

3. What does ((?)) mean?
I’ve used the symbol ((?)) to mark problems which are particularly challenging or
outside the scope of the course. I recommend at least thinking about how you could
solve them, but don’t stress if you find it difficult to tackle those problems.

4. Should I do all of these problems in order?
Probably not; there’s a variety of questions here, intended to cover most of the topics
we’ve discussed so far. If you want to work on a particular concept, you should look
for a question about that concept! Feel free to ask for recommendations.

5. Would all of your solutions be good enough to get full credit if the question was asked
on a midterm?
Certainly not all; I’m not infallible and may have made mistakes (if so, email me!),
and more importantly some of the solutions below are just sketches, or lack justifi-
cation, etc. However, I’ve tried to make most of the solutions below of reasonably
high quality.
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Problems
1. Let R = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}.

(a) Draw the region R.

Solution: Your drawing should look something like this:

x

y

1-1

1

-1

(b) Divide R into 6 rectangles of equal area.

Solution: Here’s one way to do this:

(c) Choose a sample point from each of the 6 rectangles you created in part b.

Solution: One way to do this is to pick the center of each small rectangle
as its sample point, like so:

(d) Use your work in the previous parts to estimate
∫∫
R

x2

1+y2 dxdy via a Riemann
sum.
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Solution: Using the points selected above, the estimate is

1303718/3213969 ≈ 0.405641

(e) Is the value of
∫∫
R

x2

1+y2 dxdy positive, negative, or zero?

Solution: Positive, because x2/(1 +y2) is non-negative on all of R and not
identically zero.

2. Compute ∫ 2

1

∫ −4

−5

x

y
dxdy.

3. Let R be some rectangle in R2 and let f : R2 → R be some continuous function. If
every Riemann sum approximation of

∫∫
R f dA is positive, must it be the case that∫∫

R f dA itself is positive?

Solution: Remember: we are allowed to pick any sample points we like from
the rectangles in our Riemann sum. Indeed, we can perform a Riemann sum
using only one rectangle (namely R itself), and using any point p ∈ R as the
same point. The resulting sum is then (area of R)f(p). By assumption, this is
positive for all p, so f(p) is positive for all p ∈ R. Now

∫∫
R f dA is the integral

of a positive function over a rectangle, which must be positive.

4. In the early 1600’s, Bonaventura Cavlieri published what is now know as Cavalieri’s
Principle, which says that the volume of a region in R3 is unchanged if we slide
its horizontal traces around horizontally. For example, the two stacks of coins in
Figure 1 must have the same volume because we can turn one stack into the other by
sliding the coins around horizontally (without lifting them at all). Justify Cavalieri’s
principle using calculus.

Figure 1: Two stacks of coins. Photo by Chiswick Chap, licensed under CC BY-SA 3.0.
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5. A regular tetrahedron is a polyhedron made of four equilateral triangles of the same
size, as shown in Figure 2.

Figure 2: A tetrahedron.

Compute the volume of a regular tetrahedron with side length 1.

Solution:
1

2
√

6

6. ((?)) Let f : R2 → R be a continuous function such that∫∫
R
f(x, y) dA ≥ The area of R

for all rectangles R. Show that f(x, y) ≥ 1 for all points (x, y) ∈ R2.

Solution: If f(x, y) < 1 at some point (x, y), then we can find a small rectangle
R around (x, y) on which the value of f is always less than (1 + f(x, y))/2
(since f(x, y) < (1 + f(x, y))/2). Then the integral of f over R cannot exceed
A(1+f(x, y))/2, where A is the area of R. Since f(x, y) < 1, (1+f(x, y))/2 < 1,
which means that this integral is less than the area of R. This contradicts the
assumption about f .

7. Compute ∫ 1

0

∫ 1

0

∫ 1

0
xyz dzdydx.

Solution: 1/8

8. (Source: Victoria Kala) Compute
∫∫∫
E e

z dV where E is the region enclosed by the
paraboloid z = 1 + x2 + y2, the cylinder x2 + y2 = 5, and the xy-plane.
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9. Let R be the region in R2 bounded by the y-axis, the line x = 1, and the curve
y = 1 + x2 (notably, R has infinite area). Sketch the region R and compute∫∫

R

arctan(x)
y2 dA.

Solution: R is y-simple, so it makes sense to compute this as∫ 1

0

∫ ∞
1+x2

arctan(x)
y2 dydx =

∫ 1

0

arctan(x)
1 + x2 dx.

Let u = arctan(x) so that du = dx
1+x2 . Integrating with respect to x from 0 to

1 is the same as integrating with respect to u from 0 to arctan(1) = π/4, so we
have ∫ π/4

0
u du = π/8.

10. (Source: Victoria Kala) Compute
∫∫
R(x+ y) dA where R is the region to the left of

the y-axis between the circles x2 + y2 = 1 and x2 + y2 = 4.

11. ((?)) In this problem, R will be the four-dimensional unit ball: that is, the region

R = {(w, x, y, z) ∈ R4 : w2 + x2 + y2 + z2 ≤ 1}

in R4.
(a) Find the (four-dimensional) volume of R.

Solution: The cross-section of R for a fixed value of w is described by
x2 + y2 + z2 ≤ 1−w2, i.e. it is a ball in R3 of radius

√
1− w2. The volume

of such a ball is 4
3π(1− w2)3/2 Thus, the volume is∫ 1

−1

4
3π(1− w2)3/2 dw.

We now perform a trigonometric substitution. Let w = sin(t) so that
dw = cos(t)dt. Integrating with respect to w from −1 to 1 is the same
as integrating with respect to t from −π/2 to π/2, so we get

4π
3

∫ π/2

−π/2
(1− sin2(t))3/2 cos(t) dt = 4π

3

∫ π/2

−π/2
(cos2(t))3/2 cos(t) dt

Since cos(t) is non-negative when−π/2 ≤ t ≤ π/2, we can replace (cos2(t))3/2

by cos3(t). We now have

4π
3

∫ π/2

−π/2
cos3(t) cos(t) dt.
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We now use integration by parts: let u = cos3(t) and dv = cos(t)dt. Then
du = −3 sin(t) cos2(t)dt and v = sin(t), so we have

4π
3

([
sin(t) cos3(t)

]π/2
−π/2 + 3

∫ π/2

−π/2
sin2(t) cos2(t) dt

)
.

Since sin is odd and cos is even,
[
sin(t) cos3(t)

]π/2
−π/2 = 0. Using the fact that

sin(t) cos(t) = sin(2t)/2, we are left with simply

π

∫ π/2

−π/2
sin2(2t) dt.

Using the fact that sin2(x) = 1−cos(2x)
2 , we have

π

2

∫ π/2

−π/2
(1− cos(4t)) dt = π2

2 −
π

2

∫ π/2

−π/2
cos(4t) dt.

Letting s = 4t, we have∫ π/2

−π/2
cos(4t) dt = 1

4

∫ 2π

−2π
cos(s) ds = 0,

so the volume of the 4-dimensional unit ball is simply π2/2.

(b) Let S = {(w, x, y, z) ∈ R4 : w2 +x2 +y2 + z2 = 1} – this is the boundary of R in
the same way that a sphere is the boundary of a normal three-dimensional ball.
Use your work in part a to find the volume of this three-dimensional region.

Solution: We know that the volume of a 4-dimensional ball of radius r
must be π2r4/2. Taking the derivative with respect to r gives a “surface
volume” of 2π2r3, and when r = 1 this is 2π2.

12. You’ve been challenged to an integration battle! The rules are as follows:

1. Your opponent goes first and names a curve C of length 1 from a point on the
x-axis to a point on the y-axis. Let R be the region enclosed by the x-axis, the
y-axis, and the curve C. Your opponent recieves∫∫

R
(x2 + y2) dA.

points.
2. You do the same thing: draw a curve of length 1 from the x-axis to the y-axis,

and compute the integral of x2 + y2 over the created region. You recieve points
equal to the integral’s value.
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3. If your score is greater than your opponent’s by at least 0.055, you win (and visa
versa). Otherwise, play another round and add the points you recieve to your
current score.

The good news is that your opponent doesn’t know calculus, they’ve just realized
that the function x2 + y2 increases with distance from the origin, so they want to
make a region that encloses points which as “as far away as possible from the origin”.
Based on that observation, they’re making educated guesses, but with your calculus
knowledge, you should be able to beat them!

(a) Your opponent’s first attempt was to make a triangle:

x

y

1
2

√
3

2

Make sure the path they drew has length 1, and figure out how many points
they got.

Solution:
1

16
√

3
points

(b) It turns out your opponent didn’t draw the best triangle. Figure out what the
best triangle is and how many points you get for it!

Solution: The isosceles triangle gives the best possible value, which we can
see as follows: if the triangle we draw has side length a on the x-axis and
b on the y-axis, then the slope of the hypotenuse is −b/a. Thus, the line is
given by y = b− (b/a)x, so the triangle is worth∫ a

0

∫ b−(b/a)x

0
(x2 + y2) dydx = 1

12ab(a
2 + b2) points

We thus need to optimize the function 1
12ab(a

2 + b2) with respect to the
constraint a2 + b2 = 1. The function simplifies immediately to 1

12ab, which
has gradient 1

12 〈b, a〉. By Lagrange multipliers, the optimal value is attained
when this vector 1

12 〈b, a〉 is parallel to∇(a2+b2) = 〈2a, 2b〉. This only occurs
if a = b, so the optimatal triangle is equilateral (with a = b = 1/

√
2). For

this triangle you would recieve 1/24 points.
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(c) Next, your opponent tries a square:

x

y

How many points do they earn this round? How many do they have in total?

Solution: They get 1/24 points this round, bringing their total to

1
16
√

3
+ 1

24 ≈ 0.0777511

Your score is currently 1/24, so you need to score at least

1
16
√

3
+ 0.05 ≈ 0.0860844

this round to win. It turns out this is impossible, so we have at least two
rounds to go.

(d) Find a curve that beats the square your opponent tried and figure out how many
points you get.

Solution: A reasonable choice would be the quarter-circle with radius 2/π:

x

y

This gives you 2/π3 points (integrate with polar coordinates), bringing your
total score to

1
24 + 2

π3 ≈ 0.10617.

Of course, there are infinitely many correct answers to this question!

(e) ((?)) Looks like you haven’t won yet. In good news, your opponent doesn’t have
any more original ideas, and will continue to use the same square every round
from here on out. Try to win in as few rounds as possible!
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Solution: Let

R =
(∫ 1

0

√
1 + t6

(1− t4)3/2 dt
)−1

.

The best possible path is parametrized by

ρ(t) = R〈t, (1− t4)1/4〉

from 0 to 1. It gives a score of roughly 0.0693975. If your curve in the
previous part was at least as good as the quarter-circle, you can win this
round by using this optimal path. If you use a quarter-circle repeatedly, it
will take another another round after this one.

13. Show that ∫ 1

0

∫ 1

0
(cos4(x+ y) + sin4(x− y)) dA ≤ 2

14. Let B be the unit disk in R2. Show that∫∫
B

(x6 + y6) dA ≤ π

2 .

15. Use a triple integral to find the volume of a circular cone with base radius R and
height h.

Solution: Using cylindrical coordinates, we have∫ h

0

∫ 2π

0

∫ R(1−z/h)

0
r drdθdz = π

3R
2h.

16. Let D be the region in the first octant bounded by the surfaces x2 + y2 + z2 = 1,
x2 + y2 + z2 = 2, z2 = x2 + y2, and z2 = 2x2 + 2y2. Compute∫∫∫

D

√
x2 + y2

x2 + y2 + z2 dV.

Solution: Use spherical coordinates!

17. Compute ∫ 1

−1

∫ 1

−1
sin(xy) dxdy.
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Solution: Since sin is odd, the integral over the right half of the square cancels
with the integral over the left half of the square, and we get 0.

18. Compute ∫ 2

1

∫ 2

1

x

x+ y
dxdy.

Solution: Let I =
∫ 2

1
∫ 2

1
x
x+y dxdy. By swapping x and y, we also get I =∫ 2

1
∫ 2

1
y

x+y dydx. Thus,

2I =
∫ 2

1

∫ 2

1

(
x

x+ y
+ y

x+ y

)
dxdy =

∫ 2

1

∫ 2

1
dA = 1.

We conclude that I = 1/2.

19. Compute ∫ 1

0

∫ 1

0
(cos(xy)− xy sin(xy)) dxdy

Solution: Noting that cos(xy)− xy sin(xy) = ∂2

∂x∂y sin(xy), we get simply

sin(0 · 0) + sin(1 · 1)− sin(0 · 1)− sin(1 · 0) = sin(1).

20. (Source: Victoria Kala) Compute∫ 1

0

∫ 3

3y
ex

2
dxdy.
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