
Week 9 Math 32B Worksheet #9 TA: Ben Szczesny

Problem 1 Use geometric reasoning to find

∫
S

F · dS where F and S are the following:

(a) F = 〈1, 0, 0〉 and S is the union of two squares S1 and S2 given by:
S1 : x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and S2 : z = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
where S1 is oriented in the positive x direction and S2 in the positive y
direction.

Solution. The vector field is perpendicular to the normal of S2 and so this
doesn’t add anything to the integral. The normal of S1 is in the same
direction and constant so F · n = 1 on this square. Hence the integral is
1.

(b) F = 〈1, 1, 0〉 and S is the square given by S : x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

Solution. F · n = 1 in this case and so the integral is 1.

(c) F = 〈1, 0, 0〉 and S is the cylinder given by x2 + y2 = 1 from z = 0 to
z = 1 oriented outwards.

Solution. Consider the value (F · n)(P ) for each point P on the cylinder.
Opposite points on the cylinder must be negatives of each other since the
vectors form complementary angles to each other. Hence the integral is
zero.

(d) F = 〈x, y, 0〉 and S is the cylinder given by x2 + y2 = 4 and 1 ≤ z ≤ 3
oriented outwards.

Solution. Observe that on the cylinder, the vector field is in the same
direction as the normal at each point and always has the same magnitude
of 2. Hence F · n = 2 and the integral is then 16π (The surface area of
the cylinder times 2).

Problem 2 Compute

∫∫
S

F · dS where F = 〈xyz, xyz, xyz〉 and S is the five faces of the

cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 missing z = 0 that is oriented outwards.
Hint: It is enough to just calculate one of the faces and multiply the result by
3. Why?

Solution. Observe that the vector field is zero when any of the variables are
zero. Hence we don’t need to calculate 2 of the faces. The remaining faces
and vector field are completely symmetric in all the variables so it’s enough to
calculate the integral over one face and multiply the answer by 3.

We parameterise the z = 1 face by r(u, v) = (u, v, 1) and then the parame-
terised normal is N = 〈0, 0, 1〉 and F(r(u, v)) = 〈uv, uv, uv〉 and so∫∫

S

F · dS = 3

∫ 1

0

∫ 1

0

F(r(u, v)) ·Ndudv = 3

∫ 1

0

∫ 1

0

uvdudv =
3

4
.

Problem 3 Use green’s theorem to calculate
∫
C
x2ydx+ (y − 3)dy where C is the perime-

ter of the rectangle with vertices (1, 1), (4, 1), (4, 5) and (1, 5) oriented counter-
clockwise.
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Solution. Let R be the area enclosed by C. Using green’s theorem we get∫
C

x2ydx+ (y − 3)dy =

∫
R

0− x2dA

=

∫ 4

1

∫ 5

1

−x2dydx

= −84

Problem 4 Compute

∫
∂D

(
sinx− y3

3

)
dx+

(
sin y +

x3

3

)
dy where D is the annulus given

in polar coordinates by 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2.

Solution. We have∫
∂D

(
sinx− y3

3

)
dx+

(
sin y +

x3

3

)
dy =

∫∫
D

x2 + y2dA

=

∫ 2π

0

∫ 2

1

r3drdθ

=
15π

2

Problem 5 Consider the vector field F = 〈y, 2x〉. Suppose we have two paths γ1 and γ2
that both start and end at the same point. How do the two line integrals of F
differ along the two paths?

Solution. Suppose we have it such that γ1 − γ2 is counterclockwise along the
boundary of it’s enclosed area D. Then green’s theorem tells us that∫

γ1−γ2
ydx+ 2xdy =

∫∫
D

1dA = Area(D).

Hence we get that∫
γ1

ydx+ 2xdy =

∫
γ2

ydx+ 2xdy + Area(D).

If γ1 − γ2 is clockwise instead, then we get∫
γ1

ydx+ 2xdy =

∫
γ2

ydx+ 2xdy −Area(D).
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