Problem 1 Use geometric reasoning to find $\int_{S} \mathbf{F} \cdot \mathbf{dS}$ where \mathbf{F} and \mathbf{S} are the following:

- (a) $\mathbf{F} = \langle 1, 0, 0 \rangle$ and \mathbf{S} is the union of two squares \mathbf{S}_1 and \mathbf{S}_2 given by: $\mathbf{S}_1 : x = 0, 0 \le y \le 1, 0 \le z \le 1$ and $\mathbf{S}_2 : z = 0, 0 \le x \le 1, 0 \le y \le 1$ where \mathbf{S}_1 is oriented in the positive x direction and \mathbf{S}_2 in the positive y direction.
- (b) $\mathbf{F} = \langle 1, 1, 0 \rangle$ and \mathbf{S} is the square given by $\mathbf{S} : x = 0, 0 \le y \le 1, 0 \le z \le 1$.
- (c) $\mathbf{F} = \langle 1, 0, 0 \rangle$ and \mathbf{S} is the cylinder given by $x^2 + y^2 = 1$ from z = 0 to z = 1 oriented outwards.
- (d) $\mathbf{F} = \langle x, y, 0 \rangle$ and \mathbf{S} is the cylinder given by $x^2 + y^2 = 4$ and $1 \le z \le 3$ oriented outwards.
- **Problem 2** Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = \langle xyz, xyz, xyz \rangle$ and S is the five faces of the cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ missing z = 0 that is oriented outwards. *Hint: It is enough to just calculate one of the faces and multiply the result by* 3. *Why?*
- **Problem 3** Use green's theorem to calculate $\int_C x^2 y dx + (y-3) dy$ where C is the perimeter of the rectangle with vertices (1, 1), (4, 1), (4, 5) and (1, 5) oriented counterclockwise.
- **Problem 4** Compute $\int_{\partial D} \left(\sin x \frac{y^3}{3} \right) dx + \left(\sin y + \frac{x^3}{3} \right) dy$ where *D* is the annulus given in polar coordinates by $0 \le \theta \le 2\pi, 1 \le r \le 2$.
- **Problem 5** Consider the vector field $\mathbf{F} = \langle y, 2x \rangle$. Suppose we have two paths γ_1 and γ_2 that both start and end at the same point. How do the two line integrals of \mathbf{F} differ along the two paths?