Problem 1 - Parametrization Practice. We can describe a surface by a vector function

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

where u, v are two parameters. For example, the plane $x+y+z=1$ could be described as the vector function

$$
\mathbf{r}(x, y)=\langle x, y, 1-x-y\rangle
$$

That same plane could also be described as

$$
\mathbf{r}(y, z)=\langle 1-y-z, y, z\rangle
$$

Find a parametric representation for each of the following surfaces:
(a) The plane $z=1+2 x+3 y$ that lies above the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$
(b) The elliptic paraboloid $z=x^{2}+4 y^{2}$
(c) The cylinder $x^{2}+y^{2}=9,0 \leq z \leq 1$ (try cylindrical coordinates)
(d) The sphere $x^{2}+y^{2}+z^{2}=a^{2}$ where a is a constant (try spherical coordinates)
(e) The "cone of shame" $z=\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 2$

Problem 2 - Tangent Planes to Surfaces. The equation of a tangent plane can be written as

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane and $\langle a, b, c\rangle$ is a normal vector to the plane. If we have a parametric representation $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+$ $z(u, v) \mathbf{k}$ for a given surface, the normal to that surface is given by $\mathbf{r}_{u} \times \mathbf{r}_{v}$ where

$$
\begin{aligned}
\mathbf{r}_{u} & =\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k} \\
\mathbf{r}_{v} & =\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}
\end{aligned}
$$

Find the equation of a tangent plane to the parametrized surface

$$
\mathbf{r}(u, v)=u v \mathbf{i}+u \sin v \mathbf{j}+v \cos u \mathbf{k}
$$

at $u=0, v=\pi$.
Problem 3 - Surface Area. If S is a smooth parametric surface described by a parametrization $\mathbf{r}(u, v),(u, v) \in D$, then the surface area of S is given by

$$
A=\iint_{D}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

Find the surface area of
(a) The sphere $x^{2}+y^{2}+z^{2}=a^{2}$ where a is a constant (use your parametrization found in 1d)
(b) The "cone of shame" $z=\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 2$ (use your parametrization found in 1e)

Problem 4 - Scalar Surface Integrals. If S is a smooth parametric surface described by a parametrization $\mathbf{r}(u, v),(u, v) \in D$, then the surface integral of a scalar function f over S is given by

$$
\iint_{S} f d S=\iint_{D} f(\mathbf{r}(u, v))\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

Evaluate the following surface integrals:
(a) $\iint_{S} x^{2} y z d S$ where S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$ (use your parametrization found in 1a)
(b) $\iint_{S} y d S$ where S is the cylinder $x^{2}+y^{2}=9,0 \leq z \leq 1$ (use your parametrization found in 1 c)

