- **Problem 1** Let \mathcal{D} be the region in \mathbb{R}^3 bounded by the surfaces (described in cylindrical coordinates) $\theta = z$, $\theta = z + \pi/2$, z = 0, $z = \pi/2$, and r = 1.
 - (a) Sketch the region \mathcal{D} .
 - (b) Find the volume of \mathcal{D} .
 - (c) Compute $\iiint_{\mathcal{D}} xyz \, \mathrm{d}V$.

Problem 2 For each $h \in [0, 1]$, let \mathcal{R}_h be the region in \mathbb{R}^3 bounded by the surfaces z = 0, z = h, and $x^2 + y^2 + z^2 = 1$.

- (a) Sketch the regions \mathcal{R}_1 and $\mathcal{R}_{\frac{1}{2}}$.
- (b) Let $f(h) = \iiint_{\mathcal{R}_h} dV$. Explain why $f'(h) = \pi(1-h^2)$.
- (c) Find f(h) by evaluating the integral $\iiint_{\mathcal{R}_h} dV$ using cylindrical coordinates.
- (d) Find f(h) by evaluating the integral $\iiint_{\mathcal{R}_h} dV$ using spherical coordinates.
- (e) Evaluate

$$\iiint_{\mathcal{R}_{1/2}} \frac{z}{\sqrt{x^2 + y^2 + z^2}} \, \mathrm{d}V.$$

Problem 3 Let \mathcal{E} be the region defined by $x \ge 0$, $y \le x$, $z \ge 0$, $x^2 + y^2 \le 4$, and $xz \le y$. Evaluate

$$\iiint_{\mathcal{E}} (z - x^2 - y^2) \, \mathrm{d}V.$$

Problem 4 Let \mathcal{E} be the region in the first octant bounded by $x^2 + y^2 + z^2 = 4$.

(a) Evaluate

$$\iiint_{\mathcal{E}} (x - y + 3z) \, \mathrm{d}V.$$

(b) Evaluate

$$\iiint_{\mathcal{E}} (x^2 + y^2 - z^2) \, \mathrm{d}V$$

- (c) Griff makes a piece of Jell-O[®] whose shape is \mathcal{E} . Because Griff isn't very good at cooking, the density of her Jello-O[®] is very uneven: it is given by the function $\delta(x, y, z) = \frac{x^2 + y^2}{x^2 + y^2 + z^2}$. Find the mass of Griff's Jell-O[®].
- **Problem 5** Let S be the region bounded by x = -1, x = 1, y + z = 0, y z = 0, and $y^2 + z^2 = 2$. Find the volume of S (Hint: sketch what S looks like and think about which coordinate system to use).