Problem 1 Let \mathcal{D} be the region in \mathbb{R}^{3} bounded by the surfaces (described in cylindrical coordinates) $\theta=z, \theta=z+\pi / 2, z=0, z=\pi / 2$, and $r=1$.
(a) Sketch the region \mathcal{D}.
(b) Find the volume of \mathcal{D}.
(c) Compute $\iiint_{\mathcal{D}} x y z \mathrm{~d} V$.

Problem 2 For each $h \in[0,1]$, let \mathcal{R}_{h} be the region in \mathbb{R}^{3} bounded by the surfaces $z=0$, $z=h$, and $x^{2}+y^{2}+z^{2}=1$.
(a) Sketch the regions \mathcal{R}_{1} and $\mathcal{R}_{\frac{1}{2}}$.
(b) Let $f(h)=\iiint_{\mathcal{R}_{h}} \mathrm{~d} V$. Explain why $f^{\prime}(h)=\pi\left(1-h^{2}\right)$.
(c) Find $f(h)$ by evaluating the integral $\iiint_{\mathcal{R}_{h}} \mathrm{~d} V$ using cylindrical coordinates.
(d) Find $f(h)$ by evaluating the integral $\iiint_{\mathcal{R}_{h}} \mathrm{~d} V$ using spherical coordinates.
(e) Evaluate

$$
\iiint_{\mathcal{R}_{1 / 2}} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \mathrm{~d} V
$$

Problem 3 Let \mathcal{E} be the region defined by $x \geq 0, y \leq x, z \geq 0, x^{2}+y^{2} \leq 4$, and $x z \leq y$. Evaluate

$$
\iiint_{\mathcal{E}}\left(z-x^{2}-y^{2}\right) \mathrm{d} V
$$

Problem 4 Let \mathcal{E} be the region in the first octant bounded by $x^{2}+y^{2}+z^{2}=4$.
(a) Evaluate

$$
\iiint_{\mathcal{E}}(x-y+3 z) \mathrm{d} V
$$

(b) Evaluate

$$
\iiint_{\mathcal{E}}\left(x^{2}+y^{2}-z^{2}\right) \mathrm{d} V
$$

(c) Griff makes a piece of Jell- O^{\circledR} whose shape is \mathcal{E}. Because Griff isn't very good at cooking, the density of her Jello- O^{\circledR} is very uneven: it is given by the function $\delta(x, y, z)=\frac{x^{2}+y^{2}}{x^{2}+y^{2}+z^{2}}$. Find the mass of Griff's Jell-O ${ }^{\circledR}$.
Problem 5 Let \mathcal{S} be the region bounded by $x=-1, x=1, y+z=0, y-z=0$, and $y^{2}+z^{2}=2$. Find the volume of \mathcal{S} (Hint: sketch what S looks like and think about which coordinate system to use).

