- **Problem 1** Use Green's Theorem to find the area of the ellipse $(x/3)^2 + (y/4)^2 = R^2$, where R > 0.
- **Problem 2** Let S be portion of the ellipsoid $(x/3)^2 + (y/4)^2 + (z/5)^2 = 1$ lying between the planes z = 0 and z = 1, oriented with outward-pointing normal vectors.
 - (a) Draw \mathcal{S} with its boundary orientation.
 - (b) Let F be the vector field $\langle -y, -z, 1 \rangle$. Check that F is the curl of $\langle -y, yz, xz \rangle$.
 - (c) Use Stokes' Theorem to compute $\iint_{S} F \cdot dS$.
- **Problem 3** Let $F = \langle x^3, y^4, z^2 \rangle$ and let S be the portion of the surface $z = x^2 y^2$ lying inside $x^2 + y^2 = 1$, oriented in the positive z-direction. Use Stokes' Theorem to compute

$$\oint_{\partial \mathcal{S}} F \cdot \mathrm{d}r$$

- **Problem 4** Let f(x, y, z) be an infinitely differentiable function of 3 variables. Let S be the level surface f(x, y, z) = 0.
 - (a) Explain why the flux of ∇f through S must be nonzero, assuming that S has nonzero surface area.
 - (b) Use this to show that the vector field $\langle x,y,z\rangle$ does not have a vector potential.
- **Problem 5** Let S be the surface given in spherical coordinates by $\rho = 1 + \sin(\phi)$, oriented outward.
 - (a) Sketch the surface \mathcal{S} .
 - (b) Use Stokes' Theorem to compute $\iint_{\mathcal{S}} F \cdot dS$, where $F = \langle -4z^3, -2x, -3y^2 \rangle$.