Problem 1 Use Green's Theorem to find the area of the ellipse $(x / 3)^{2}+(y / 4)^{2}=R^{2}$, where $R>0$.

Problem 2 Let \mathcal{S} be portion of the ellipsoid $(x / 3)^{2}+(y / 4)^{2}+(z / 5)^{2}=1$ lying between the planes $z=0$ and $z=1$, oriented with outward-pointing normal vectors.
(a) Draw \mathcal{S} with its boundary orientation.
(b) Let F be the vector field $\langle-y,-z, 1\rangle$. Check that F is the curl of $\langle-y, y z, x z\rangle$.
(c) Use Stokes' Theorem to compute $\iint_{\mathcal{S}} F \cdot \mathrm{~d} S$.

Problem 3 Let $F=\left\langle x^{3}, y^{4}, z^{2}\right\rangle$ and let \mathcal{S} be the portion of the surface $z=x^{2}-y^{2}$ lying inside $x^{2}+y^{2}=1$, oriented in the positive z-direction. Use Stokes' Theorem to compute

$$
\oint_{\partial \mathcal{S}} F \cdot \mathrm{~d} r .
$$

Problem 4 Let $f(x, y, z)$ be an infinitely differentiable function of 3 variables. Let \mathcal{S} be the level surface $f(x, y, z)=0$.
(a) Explain why the flux of ∇f through \mathcal{S} must be nonzero, assuming that \mathcal{S} has nonzero surface area.
(b) Use this to show that the vector field $\langle x, y, z\rangle$ does not have a vector potential.

Problem 5 Let \mathcal{S} be the surface given in spherical coordinates by $\rho=1+\sin (\phi)$, oriented outward.
(a) Sketch the surface \mathcal{S}.
(b) Use Stokes' Theorem to compute $\iint_{\mathcal{S}} F \cdot \mathrm{~d} S$, where $F=\left\langle-4 z^{3},-2 x,-3 y^{2}\right\rangle$.

