Problem 1 For the following questions, assume that the vector field \mathbf{F} has a vector potential. That is, $\mathbf{F}=\operatorname{curl}(\mathbf{G})$ wherever it is defined.
(a) Show that for a closed surface (that is a surface S such that $\partial S=\emptyset$) that we have $\iint_{S} \mathbf{F} \cdot d S=0$.
(b) Suppose we have two surfaces S, S^{\prime} such that the boundaries are the same with the same induced orientation. Show that

$$
\iint_{S} \mathbf{F} \cdot d S=\iint_{S^{\prime}} \mathbf{F} \cdot d S
$$

(c) What happens if the induced orientation of the two surfaces in the previous question are not the same?
(d) Show that $\operatorname{div}(\mathbf{F})=0$.
(e) Each of the above statements have a corresponding statement when \mathbf{F} has a scalar potential instead (i.e, it is a conservative vector field) and in terms of line integrals instead of surface integrals. What are they?

Problem 2 (From OpenStax) Calculate $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d S$ where $\mathbf{F}=\langle z, x, y\rangle$ and S is the below surface with outwards pointing normal. Bonus: Can you do this without parameterising anything?

Problem 3 (From OpenStax) Calculate the surface integral $\iint_{S} \mathbf{F} \cdot d S$ where S is the cylinder $x^{2}+y^{2}=1,0 \leq z \leq 2$ including the top and bottom and $\mathbf{F}=$ $\left\langle\frac{x^{3}}{3}+y z, \frac{y^{3}}{3}-\sin (x z), z-x-y\right\rangle$.

Problem 4 Let \mathbf{F} be the inverse square field:

$$
\mathbf{F}=\frac{\langle x, y, z\rangle}{r^{3}}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Note, this is called the inverse square field since $\|\mathbf{F}\|=1 / r^{2}$.
(a) Show that $\operatorname{div}(\mathbf{F})=0$
(b) Let S be the unit sphere around the origin with outwards pointing normal. Show that $\iint_{S} \mathbf{F} \cdot d S=4 \pi$.
(c) Let E be the volume enclosed by S. The divergence theorem would say that we have

$$
\iint_{S} \mathbf{F} \cdot d S=\iiint_{E} \operatorname{div}(\mathbf{F}) d V=0 .
$$

This contradicts our calculation above. What's going on? Hint: This is a higher dimensional analogue of the vortex field.

Problem 5 Consider Problem 1 again, except replace the condition that $\mathbf{F}=\operatorname{curl}(\mathbf{G})$ with $\operatorname{div}(\mathbf{F})=0$. When are the statements in Problem (1.a) and Problem (1.b) true? When do you think it's true that $\operatorname{div}(\mathbf{F})=0$ implies that \mathbf{F} has a vector potential?

Problem 6 Let S be the portion of the paraboloid $z=1-x^{2}-y^{2}$ above the $x y$-plane and let $\mathbf{F}=\left\langle y^{2} z, x^{2} z^{2}, y\right\rangle$. Find $\iint_{S} \mathbf{F} \cdot d S$.

Problem 7 Use the divergence theorem to compute the volume of the ellipsoid $(x / a)^{2}+$ $(y / b)^{2}+(z / c)^{2}=1($ where $a, b, c>0)$.

Problem 8 A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called harmonic if $\operatorname{div}(\nabla f)=0$.
(a) Find an example of a harmonic function and an example of a function which is not harmonic.
(b) Find two harmonic functions whose product is not harmonic.

Problem 9 Let S be the surface defined by $x y+y z-x z=2$. Given a point on S (for example, $(-1,0,2))$ describe how you could find a normal vector to S at that point without parametrizing.

Problem 10 Let S be the surface defined by $x^{4}+y^{4}+z^{4}=1$, oriented outwards. Show that $\iint_{S}\left\langle x^{3}, y^{3}, z^{3}\right\rangle \cdot \mathrm{d} S$ is positive.

Problem 11 Let S be the unit sphere in \mathbb{R}^{3}.
(a) Let \mathbf{F} be a vector field. Prove that

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} S \leq \iint_{S}\|\mathbf{F}\| \mathrm{d} S
$$

(b) Find a vector field \mathbf{F} such that

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} S=\iint_{S}\|\mathbf{F}\| \mathrm{d} S
$$

