Week 3 Triple Integrals Keminders: · Z-simple region consists of points (X, J, 2) between two surfaces Z=Z, (X,y), Z=Z2(X,y) where Z1(X,y) <Z <Z2(X,y), lying over domain D in Xy-plainer. So W is defined by $(x,y) \in \mathbb{P}$ $\exists (x,y) \leq z \leq z_2(x,y)$. In otherwords, all lines parrallel to 2-axis that interect W do so unbroken. . Triple integrals over W equal to iterated integral $\iint_{\mathcal{V}} f(x,y,z) dV = \iint_{\mathcal{D}} \int_{\mathcal{D}}^{\mathcal{D}} f(x,y,z) dz dA.$ · Nothing special about 2 about, norks for X, y too. Example evaluate ISS ez 20 where W: X+y+ZSI × 70, 470, 270. Now, x+y+Z=1 1) the plane through (1,0,0), (0,1,0) and (0,0,1). Hence it follows that W is the wedge. NOW, I want 2 to be the inner integral. So I think for each A Axed (x,y), what is the possible vange of 2-values in this vegion? well. it's below the plane Calven by

Ly D vange of Z-values in this region? well, it's below the plane (given by ZSI-X-Y) and above Xy-plane (Z),0). Hence we get. 05251-X-Y. $\int \int \int e^{z} dv = \int \int \int e^{1-\chi-\eta} e^{z} dz dA \quad where \quad D i$ the "shadow" of W onto the xy-plane, which we Agure out to be given by OSXEI, OSYSI-X. Hence, $\int \int e^{-2} dV = \int \int \int e^{-x} e^{-x} dz dy dx$ $= \int_{0}^{1} \int_{0}^{1-x} \left(e^{1-x-y} - 1 \right) dy dx$ $= \int -e^{1-x-y} - y \int dx$ $= \int_{-1}^{1} - 1 + e^{1-x} - 1 + x \, dx$ $= -e^{1-x} + \frac{x^2}{2} - 2x$ $= -1 + e + \frac{1}{2} - 2 = e - \frac{5}{2}$ Questions Find SSS zdV where W is the shape: 3

Answer: The top surface is given by
$$2 = \frac{1}{4}$$
 y
(think of corresponding line in y2-plane) Hence if
follows for each fixing), we have the possible 2-value
 $0 \le 2 \le \frac{1}{4}$ y. The shadaw of W on the xy-plane
is the box $[0,3] \times [0,4]$. Hence
 $\iint \frac{1}{2} = dV = \iint \frac{1}{2} \frac{1}{2}$

Answer
Draw the region:
$$1^{\pm}$$
 this is the slive between
the two planes
 $x_{1}y_{1}z_{2}=1$.
 $x_{1}y_{1}z_{2}=1$.
Let W be this solid. For each fixed $(x_{1}y)$, the
 z_{1} -values are below the points s.t $x_{1}y_{1}z_{2}=1$
 $e = 1 - x - y$, i.e. $z \in (-x - y)$.
and they are above points $(t - x + y_{1}z_{2}=1) = 2 = \frac{1}{2}(1 - x - y)$
is $z = \frac{1}{2}(1 - x - y)$, there is follows
 $V = \iiint dV = \iint \int_{0}^{1-x} \int_{\frac{1}{2}(1 - x - y)}^{1-x} dz dy dx$ (Note $V = 1$).
 $= \int_{0}^{1} \int_{0}^{1-x} \frac{1}{2}(1 - x - y) dy dx$
 $= \int_{0}^{1} \int_{0}^{1-x} \frac{1}{2}(1 - x - y) dy dx$
 $= \frac{1}{2}\int_{0}^{1} y - xy - \frac{1}{2}\int_{0}^{1-x} dx$

 $=\frac{1}{2}\int_{0}^{1}\frac{1-x-x(1-x)-(1-x)^{2}}{2}dx$ $-\frac{1}{2}\int_{0}^{1} 1-2x+x^{2}-\frac{1-2x+x^{2}}{2}dx$ $= \frac{1}{2} \int_{1}^{1} \frac{1}{2} - x + \frac{x^{2}}{2} dx = \frac{1}{4} \int_{1}^{1} (1 - x)^{2} dx$ $= -\frac{1}{12}(1-x)^{3} \Big|_{1}^{1} = \frac{1}{12}$ Question: Let Whe the region bounded by z=1-y2, y=x2 and plane z=0. Write Volume of W us triple integral in the order dzdydx; dxdzdy and dydzdx. Answer: We first try and picture this. -₂ - 1- 7² look, like \checkmark dzdydx order: First look at possible 2-values for given (X, y) we see by above 05251-92

First look at possible 2-values for given
$$(x, y)$$

we see by above $0 \le 2 \le 1 - y^2$
Then possible y-values for given x : $x^2 \le y \le 1$
and finally possible x-values: $-1 \le x \le 1$
 $V = \int_{-1}^{1} \int_{x^2}^{1-y^2} dz dy dx$

dxdzdy order:
possible x-values (given
$$(y,z)$$
): $-5y \le x \le 5y$
possible z-values: $0 \le 2 \le 1 - y^{2}$
possible y-values: $0 \le y \le 1$
 $\therefore V = \int_{0}^{1} \int_{0}^{1-y^{2}} \int_{-5y}^{5y} dxdzdy$.
 $dydzdx$ order:
possible y-values (given (x, z)): $x^{2} \le y \le 51 - z$
shadow on xz -plane:
 $1 \qquad y^{2} \qquad y^{2$

checking these give same volume: (not part of Q). $\int \int \int \frac{1-y^2}{y^2} dy dx = \int \int \frac{1-y^2}{y^2} dy dx$ $= \left(\begin{array}{c} y - y^{3} \\ y^{2} \\ y^{2} \end{array} \right)^{1} dx$ $= \int \frac{1}{2} - x^{2} + \frac{x^{6}}{2} dx$ $= 2\left(\frac{2}{3}\times-\frac{3}{2}+\frac{1}{2}\right)^{-1}$ $= 2(\frac{1}{3}+\frac{1}{21}) = \frac{16}{21}$ $\int \int \int \int dx dz dy = \int \int \int \int 2 \sqrt{y} dz dy$ = 2 { 'y" - y"2 dy $= 2\left(\frac{2}{7}y^{3/2} - \frac{2}{7}y^{2/2}\right)^{1}$ $-2\left(\frac{2}{3}-\frac{2}{7}\right)-2\left(\frac{14-6}{7}\right)$ $= \frac{16}{2}$ 1-×t

$$J_{-1} J_{0} J_{x^{2}} = \int_{-1}^{1} -\frac{2}{3} (1-3)^{3/2} - x^{2} z \Big|_{0}^{1-x^{2}} dx$$

$$= \int_{-1}^{1} -\frac{2}{3} x^{6} - x(1-x^{4}) + \frac{2}{3} dx$$

$$= \int_{-1}^{1} -\frac{2}{3} x^{6} - x^{2} + x^{6} + \frac{2}{3} dx$$

$$= 2 \int_{0}^{1} \frac{1}{3} x^{6} - x^{2} + \frac{2}{3} dx$$

$$= 2 \left(\frac{1}{21} - \frac{1}{3} + \frac{2}{3} \right)$$

$$= 2 \left(\frac{1}{21} - \frac{1}{3} + \frac{2}{3} \right)$$

$$= \frac{16}{2},$$
So everything checks out:

$$P_{0}[ar \quad (ord_{1}mates')]$$

$$The transformation
$$(x, y) \mapsto (\sqrt{x^{2}}y^{2}, \tan^{-1}(\frac{y}{x})) (z - (v, 0))$$
is the mapping from verbangular to polar coordinates
the mapping form to use the polar coordinates

$$= 16 \left(2 + \frac{1}{2} + \frac{1}{3} \right)$$$$

 $(r, \theta) = (r \cos \theta, r \sin \theta)$ Quick Question describe what the following eq. look like a) r=2 c) r=2sec0b) 0=2 d) r=2cosec(0)Answer: a) circle radius two c) vorheal line, x=2. b) line from origin d) hovizontal line y=2 Question: convert the equation v=2 sind to an equation in rectangular coordinates Answer: $v = 2\sin \Theta \implies v^2 = 2v\sin \Theta$ as $r \neq 0$. and as Y2 = X2 1 y2 vsin 0 = yTherefore equation becomes x2+y2=2y and completing the square x2+ (y-1)2=1 su circle radius 2 centred at (0,1).