
UCLA: Math 32B Week 9 Worksheet (solutions) Spring 20

Recall Green’s theorem: If D ⊂ R2 has boundary ∂D that is a simple closed curved curve oriented
counterclockwise relative to D, then if F = 〈F1, F2〉 is a vector field with continuous partial derivatives defined

on D then

∮
∂D

F ·dr =

∫∫
D

∇×F dA, or to write it differenly

∮
∂D

F1dx+F2dy =

∫∫
D

∂F2/∂x−∂F1/∂y dA.

1. Let F = 〈sinx2, xy〉 and let C be the triangle with vertices (0, 0), (3, 0), (3, 2) oriented counterclockwise.

What is

∮
C

F · dr?

Solution: We could compute this directly by splitting the curve C into three straight lines, but
since this week’s worksheet is about Green’s Theorem, let’s use that tool. The curl of F is y, so by
Green’s Theorem we have ∫∫

D
y dA =

∮
C

F · dr

where D is the region bounded by C. We can now compute this double integral directly:∮
C

F · dr =

∫∫
D
y dA =

∫ 3

0

∫ 2x/3

0

y dy dx =
2

9

∫ 3

0

x2 dx =
2

9
· 27

3
= 2.

2. Let F = 〈ey
2

,−ex
2

〉 and let C be the oriented curve r(t) = 〈cos t, sin t〉 where π/4 ≤ t ≤ 5π/4. What is∫
C

F · dr?

Just doing this directly is going to leave you with a tough (but not impossible!) integral. Talk with your
group about how you might go about computing this. You can’t use Green’s theorem since C isn’t a
closed curve and you can’t use path independence since the vector field isn’t conservative. Can you find
some other curve with the same end points as C where computing the line integral is easy and then use
Green’s theorem? At some point you might want to use some symmetry over the line y = −x, i.e. you
might have a region where if (x, y) is in your region then (−y,−x) is as well.

Solution: Let L be the line from r(5π/4) to r(π/4). This can be parametrized by

s(t) =
1√
2
〈2t− 1, 2t− 1〉 , 0 ≤ t ≤ 1

L and C together bound a half-disc D, so Green’s Theorem tells us that∫∫
D
∇× F dA =

∫
C

F · dr +

∫
L

F · dr,

hence ∫
C

F · dr =

∫∫
D
∇× F dA−

∫
L

F · dr.

The curl of F is (∇× F)(x, y) = −(2xex
2

+ 2yey
2

). Notice that

(∇× F)(−y,−x) = −(2(−y)e(−y)
2

+ 2(−x)e(−x)
2

) = 2(xex
2

+ yey
2

) = −(∇× F)(x, y).

Since D is symmetric about the line y = −x, we get that∫∫
D
∇× F dA = −

∫∫
D
∇× F dA,
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so ∫∫
D
∇× F dA = 0.

Next, we see that ∫
L

F · dr =

∫ 1

0

F(s(t)) · s′(t)dt =
1√
2

∫ 1

0

F(s(t)) · 〈2, 2〉dt

Since the two components of s(t) are equal, the two components of F(s(t)) add to 0, thus F(s(t)) ·
〈2, 2〉 = 0, so we have ∫

L

F · dr = 0,

and thus ∫
C

F · dr =

∫∫
D
∇× F dA−

∫
L

F · dr = 0− 0 = 0.

3. In the examples we’ve done so far we’ve used Green’s theorem to compute a line integral by realizing
that the line integral is equal to an integral over a region of the plane. We can also go in the other
direction, Green’s theorem can help us compute double integrals. In particular it can help us integrate
1, i.e. find the area of regions of the plane.

(a) Find the area of the ellipse (x/a)2 + (y/b)2 = 1 using Green’s theorem. Hint: The curl of 〈0, x〉 is
1.

Solution: Let E be the ellipse. ∂E can be parametrized by

r(t) = 〈a cos(t), b sin(t)〉 , 0 ≤ t ≤ 2π.

Now by Green’s Theorem, we have

Area of E =

∫∫
E

1 dA =

∫∫
E
(∇× 〈0, x〉) dA =

∮
∂E
〈0, x〉 · dr

=

∫ 2π

0

〈0, a cos(t)〉 · 〈−a sin(t), b cos(t)〉dt =

∫ 2π

0

ab cos2(t)dt =
ab

2

∫ 2π

0

(1 + cos(2t))dt

= abπ.

(b) Find a parameteriation of the curve x2/3 + y2/3 = 1 and use Green’s theorem to compute the area

bounded by this curve. Hint: Let x(t) = cos3 t.

∫ 2π

0

cos4 t dt = 3π/4 and

∫ 2π

0

cos6 t dt = 5π/8.

Solution: We want the curve to be parametrized by r(t) =
〈
cos3(t), y(t)

〉
for some function

y, so we need cos2(t) + y(t)2/3 = 1. Equivalently, we want y(t)2/3 = 1− cos2(t) = sin2(t), so it
seems reasonable to choose y(t) = sin3(t). Indeed we can check that

r(t) =
〈
cos3(t), sin3(t)

〉
, 0 ≤ t ≤ 2π

parametrizes the desired curve. Now by Green’s Theorem (using the same technique as in part
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(a)), the area bounded by the curve is just∫ 2π

0

〈
0, cos3(t)

〉
·
〈
−3 cos2(t) sin(t), 3 sin2(t) cos(t)

〉
dt = 3

∫ 2π

0

sin2(t) cos4(t)dt

= 3

∫ 2π

0

(1− cos2(t)) cos4(t)dt = 3

(∫ 2π

0

cos4(t)dt−
∫ 2π

0

cos6(t)dt

)
= 3

(
3π

4
− 5π

8

)
=

3π

8
.

4. A few weeks ago we stated without proof that if a vector field with zero curl was defined on a simply
connected region of the plane then line integrals over it are path independent. Use Green’s theorem to
show that this statement is true. Make sure that you consider how to deal with the case that two curves
with the same beginning and end points might intersect at other points.

Solution: Let D be a simply connected domain over which a vector field F is defined, where
∇× F = 0 on D. Let γ1 : [0, 1]→ D and γ2 : [0, 1]→ D be two curves such that γ1(0) = γ2(0) and
γ1(1) = γ2(1).

Let p1, . . . , pn be the distinct points of intersection of the two curves, listed in order of appearance
on γ1; that is, if 1 ≤ i < j ≤ n then there exist t1, t2 ∈ [0, 1] such that t1 < t2, γ1(t1) = pi, and
γ1(t2) = pj . For each 1 ≤ i < n, let C1,i be the portion of γ1 between the points pi and pi+1; to
be more precise, we want the portion of γ1 between the first time it passes through pi and the last
time it passes through pi+1. Likewise, let C2,i be the portion of γ2 between the points pi and pi+1.

Now, for each 1 ≤ i < n, the curve C1,i might intersect itself (perhaps multiple times) between its
start and end points. If it does, let ri : [0, 1] → D parametrize C1,i. Let ti,1 be the first value of t
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for whcih ri(t) = ri(t
′) for some t′ > t, and let ti,2, . . . , ti,ki be the values of t (in increasing order)

such that ri(t) = ri(t
′) for some t′ < t. For each 1 ≤ j < ki, let C1,i,j be the portial of C1,i between

the times ti,j and ti,j+1.

Now the curves C1,i,j are closed, and entirely contained in the simply connected region D, so each
bounds a closed region Di,j over which the curl of F is zero. As a result, Green’s theorem tells us
that

∫
C1,i

F · dr =

∫ ti,1

0

F(ri(t)) · r′i(t)dt+

ki−1∑
j=1

∮
C1,i,j

F · dr +

∫ 1

ti,ki

F(ri(t)) · r′i(t)dt

=

∫ ti,1

0

F(ri(t)) · r′i(t)dt+

ki−1∑
j=1

∫∫
Di,j

0 dA+

∫ 1

ti,ki

F(ri(t)) · r′i(t)dt

=

∫ ti,1

0

F(ri(t)) · r′i(t)dt+

∫ 1

ti,ki

F(ri(t)) · r′i(t)dt.

In other words, the integral over C1,i would be unchanged if we ”skipped over” the part of the curve
between the points where C1,i intersects itself. As a result, we may assume without loss of generality

that C1,i does not intersect itself, since we will only care about the value of

∫
C1,i

F · dr. Likewise,

we may assume that C2,i does not intersect itself for any 1 ≤ i < n.

Now, for each 1 ≤ i < n, the curve C1,i −C2,i (or C2,i −C1,i) bounds a closed region Di over which
the curl of F is zero.
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By Green’s Theorem,

0 = ±
∫∫
Di

0 dA =

∫
C1,i−C2,i

F · dr,

so ∫
C1,i

F · dr =

∫
C2,i

F · dr.

Now ∫
C1

F · dr =

n−1∑
i=1

∫
C1,i

F · dr =

n1∑
i=1

∫
C2,i

F · dr =

∫
C2

F · dr,

as desired.


