

Figure 1: Bicylinder

1. In this question we'll study the surface M with parameterization $G(u, v)=(x(u, v), y(u, v), z(u, v))$ where:

$$
\begin{aligned}
& x(u, v)=2 \cos u+v \sin (u / 2) \cos u \\
& y(u, v)=2 \sin u+v \sin (u / 2) \sin u \\
& z(u, v)=v \cos (u / 2)
\end{aligned}
$$

where $0 \leq u \leq 2 \pi$ and $-1 \leq v \leq 1$.
Think of $G(u, v)$ as the sum of two vector valued functions: $c(u)=\langle 2 \cos u, 2 \sin u, 0\rangle$ and $s(u, v)=$ $v\langle\sin (u / 2) \cos (u), \sin (u / 2) \sin u, \cos (u / 2)\rangle$.
(a) As u varies from 0 to 2π, what curve does c make?
(b) What is the length of the vector $s(u, v)$?
(c) What angle does $s(u, v)$ make with the z-axis? Hint: Recall that the angle θ between two vectors v, w is determined by $\cos \theta=\frac{v \cdot w}{\|v\|\|w\|}$.
(d) Observe that for a fixed $u, s(u, v)$ is a straight line. Note also that the projection of $s(u, v)$ into the $x y$-plane is parallel to $c(u)$.
(e) What surface is M (the one that is parameteried by G)? It might help to plot the points where $v= \pm 1$ and u varies from 0 to 2π in multiples of $\pi / 2$.
(f) Use this geogebra applet: https://www.geogebra.org/m/BjV7cNwb (or some other computer program) to visualize M. For each of questions a-d, relate what you found to properties of the surface M.
(g) Compute the normal vector to this surface. What it the normal vector when $u=0$ and $v=0$ and what it is when $u=2 \pi$ and $v=0$? What does this tell you?
2. What is the area of the part of the surface $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4 ?$
3. Consider the region bounded by two cylinders of radius one intersecting at right angles to each other, i.e. $\mathcal{B}=\left\{(x, y, z): x^{2}+y^{2} \leq 1\right\} \cap\left\{(x, y, z): x^{2}+z^{2} \leq 1\right\}$. This is called a bicylinder. See the picture above.
(a) What is the surface area of \mathcal{B} ? Hint: The bicylinder's surface comes in four parts, and each has the same surface area. To find the surface area of one part you can parameterize half of one of the cylinders by thinking of it as the graph of a function, and the domain for your parameters will be
constrained by the other cylinder. Once you set up the integral computing surface area the integral is quick to do.
Mathematicians of antiquity like Archimedes knew how to compute the volume of the bicylinderit is much easier with calculus!
(b) What is the volume of \mathcal{B} ? For this, it probably again is a good idea to split \mathcal{B} into four or even 8 pieces.

