1. Let $\mathbf{F}(x, y)=\left\langle y^{2}+1,2 x y-2\right\rangle$. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d r$ where \mathcal{C} is:
(a) The line segment from $(0,0)$ to $(1,1)$.
(b) The path from $(0,0)$ to $(1,1)$ that first moves in a straight line to $(0,1)$ and then moves in a straight line to $(1,1)$.
(c) Reconcile your answers with the fundamental theorem of conservative vector fields.
2. Let $f(x, y)=\sin x+x^{2} y$ and let $\mathbf{F}=\nabla f$. Let \mathcal{C} be the part of the parabola $y=x^{2}$ going from $(0,0)$ to $\left(\pi, \pi^{2}\right)$.
(a) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d r$ using the definition of vector line integrals.
(b) Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d r$ using the fundamental theorem of conservative vector fields.
3. Consider the vector field $\mathbf{F}=\left\langle 2 x y^{2} z^{2}+e^{x^{2}}, 2 x^{2} y z^{2}-e^{y^{2}}, 2 x^{2} y^{2} z\right\rangle$. Let \mathcal{C} be the part of the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle 0 \leq t \leq 1$. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
Before you embark on doing this problem, discuss with your group different ways that you might approach this problem.
4. A vector field \mathbf{F} has curl zero and is defined on all of \mathbb{R}^{2} except for $(0,0)$ and $(2,0)$.
(a) Show that if \mathcal{C} is the circle of radius R with $R>1$ centered at $(1,0)$ then $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ is independent of R.
(b) Integrating \mathbf{F} over a small circle centered at $(0,0)$ oriented counterclockwise gives 2 and integrating \mathbf{F} over a small circle centered at $(2,0)$ oriented clockwise gives -1 .
What is the integral of \mathbf{F} over the circle of radius R with $R>1$ centered at $(1,0)$ oriented counterclockwise?
