

- 1. Match the vector field with its plot in the above figure. Talk with your group and relate characteristics of the plots to the functions.
 - (a) $\mathbf{F}(x,y) = \langle x,y \rangle$
 - (b) $\mathbf{F}(x,y) = \langle y, y x \rangle$
 - (c) $\mathbf{F}(x,y) = \langle \cos x, \cos y \rangle$
 - (d) $\mathbf{F}(x,y) = \langle x, x-2 \rangle$
- 2. Which of the above vector fields can you conclude are *not* conservative? For the others, can you find a potential function?
- 3. Show that if $\mathbf{F}(x, y, z)$ is a vector field with smooth component functions then the divergence of the curl of \mathbf{F} is 0, i.e. $\nabla \cdot (\nabla \times F) = 0$. Give an explanation for why this is not surprising in light of what you know about \cdot and \times from 32a.
- 4. Try to determine whether or not the vector field $\mathbf{F}(x,y,z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle$ is conservative. If you think it is conservative, find a potential function.
- 5. Consider the vector field $\mathbf{F}(x,y) = \langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$.
 - (a) Compute $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} is the circle of radius r centered at the origin, oriented counterclockwise. This computation shows that \mathbf{F} is *not* conservative. (We'll talk about this more in class on Wednesday)
 - (b) Show that the curl of **F** is 0. Is this surprising in light of numbers 2 and 4 on this worksheet and that fact that **F** is not conservative (and what we've talked about in class, if you are doing this worksheet later in the week)? Give a resolution to the conundrum. **Hint:** What are the domains of all these vector fields?

Question 2

we use the cross partials condition to test if a vector field is not conservative.

$$\partial F_1/\partial y = 0 = \partial F_2/\partial x$$
.

So it passes and we try and find a potential function.

$$\nabla f = \langle x, y \rangle \Rightarrow f_x = x, f_y = y.$$

Hence
$$f = \frac{x^2}{2} + \frac{y^2}{2}$$
 works.

$$\partial F_1/\partial y = 1 \neq -1 = \frac{\partial F_2}{\partial x}$$

Hence not conservative.

$$C) \overrightarrow{F} = \langle \cos x, \cos y \rangle$$

$$\partial F_1/\partial y = 0 = \partial F_2/\partial x$$
.
Non, $\nabla f = \langle \cos x, \cos y \rangle$
 $f_x = \cos x$, $f_y = \cos y$.

Hence F= SINX+SINY works.

d)
$$\hat{F} = \langle x, x-2 \rangle$$

 $\partial \hat{F}/\partial y = 0 \neq 1 = \partial F_{2}/\partial x$.
Hence not conservative.

3. Show that if $\mathbf{F}(x, y, z)$ is a vector field with smooth component functions then the divergence of the curl of \mathbf{F} is 0, i.e. $\nabla \cdot (\nabla \times F) = 0$. Give an explanation for why this is not surprising in light of what you know about \cdot and \times from 32a.

$$\overrightarrow{F}(x,y,z) = \langle F_1, F_2, F_3 \rangle$$

$$\nabla x \overrightarrow{F} = \begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{vmatrix}$$

$$= \langle \partial_y F_3 - \partial_z F_2, \partial_z F_1 - \partial_x F_3, \partial_x F_2 - \partial_z F_1 \rangle$$

$$\nabla \cdot (\partial_x \hat{F}) = \partial_x \partial_y F_3 - \partial_x \partial_z F_z$$

$$+ \partial_y \partial_z F_1 - \partial_y \partial_x F_3$$

$$+ \partial_z \partial_x F_2 - \partial_z \partial_y F_1$$

$$= 0 \text{ by mixed parhab dequations Heaven.}$$

This is unsurprising since in general à. (àxb)=> axb is orthogonal to à and so the dist product with à is zero.

4. Try to determine whether or not the vector field $\mathbf{F}(x,y,z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle$ is conservative. If you think it is conservative, find a potential function.

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ y^{2} & 2xy^{\dagger}e^{3\tau} & 3ye^{3\tau} \end{vmatrix}$$

$$= \langle 3e^{3\tau} - 3e^{3\tau}, 0 - 0, 2y - 2y \rangle$$

$$= 0$$

Since \hat{F} defind on a simply connected domain we conclude \hat{F} is conservative. Non, we have $\hat{F} = \nabla f$ Go some f. Hence $f_x = y^2$. 0 $f_y = 2xy + 3e^2$. - (2) $f_z = 3ye^{3z}$. - (3)

From \mathfrak{D} : $f = \int f_{x} dx$ $f = xy^{2} + C(y,2). \mathfrak{D}$ So $f_{y} = 2xy + C_{y}(y,2)$ equals with \mathfrak{D} : $2xy + C_{y}(y,2) = 2xy + 3e^{2}$

$$(c_{y}(y_{1}^{2}) = 3e^{2})$$

$$(c_{y}(y_{1}^{2}) = 3ye^{2} + D(2))$$
Hence by $G: f = xy^{2} + 3ye^{2} + D(2)$

$$f_{z} = 3ye^{2} + D_{z}(z)$$
Equals with $(3): D_{z}(2) = 0$

$$\text{Hence } D(2) \text{ is constant.}$$

$$\text{Let } D(2) = 0.$$

$$\text{Hence } f = xy^{2} + 3ye^{2} \text{ is a potential function.}$$

- 5. Consider the vector field $\mathbf{F}(x,y) = \langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$.
 - (a) Compute $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} is the circle of radius r centered at the origin, oriented counterclockwise. This computation shows that \mathbf{F} is *not* conservative. (We'll talk about this more in class on Wednesday)
 - (b) Show that the curl of **F** is 0. Is this surprising in light of numbers 2 and 4 on this worksheet and that fact that **F** is not conservative (and what we've talked about in class, if you are doing this worksheet later in the week)? Give a resolution to the conundrum. **Hint:** What are the domains of all these vector fields?

(a)
$$\dot{r}(t) = \langle r \cos t, v \sin t \rangle$$

 $\dot{r}'(t) = \langle -r \sin t, r \cos t \rangle$
 $\dot{r}(\dot{r}(t)) = \langle -\frac{\sin t}{r}, \frac{\cos t}{r} \rangle$

Hence
$$\int_{C}^{2\pi} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} 1 \cdot d\vec{t} = 2\pi$$
.

(b)
$$\nabla \times \vec{F} = \langle 0, 0, \frac{x^2y^2 - 2x^2}{(x^2 + y^2)^2} + \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} \rangle$$

$$= \vec{0}.$$

The domain of F isn't simply connected.