- 1. (a) Find a change of coordinates map G that takes the unit square $[0,1] \times [0,1]$ to the parallelogram with vertices (0,0), (2,1), (1,2)(3,3).
 - (b) Find the Jacobian of G.
 - (c) Find a change of coordinates map G' that takes the unit square $[0,1] \times [0,1]$ to the parallelogram with vertices (2,1), (4,2), (3,3), (5,4).
 - (d) Find the Jacobian of G' and give a geometric explanation for the similarity between the Jacobian of G and that of G'.
- 2. Consider the region \mathcal{D} defined by $1 \le x^2 y^2 \le 4$ and $0 \le y \le \frac{3x}{5}$. In this problem you'll set up an integral to compute $\iint_{\mathcal{D}} e^{x^2 y^2} dA$.

Consider the change of coordinates $G(u, v) = \left(\frac{v}{2} + \frac{u}{2v}, \frac{v}{2} - \frac{u}{2v}\right)$. Recall from class that the inverse of this coordinate change is given by $G^{-1}(x, y) = (x^2 - y^2, x + y)$

- (a) Find a region \mathcal{R} of the *uv*-plane so that $G : \mathcal{R} \to \mathcal{D}$ is a change of coordinates map (so G is onto and one-to-one on the interior of \mathcal{R}). Hint: Start by finding 4 curves in the *uv*-plane that map to the 4 curves forming the boundary of \mathcal{D} .
- (b) Give an iterated integral in *uv*-coordinatees to compute $\iint_D e^{x^2 y^2} dA$ (No need to compute the actual integral, but it is an integral you can compute).

3. Consider the region of the part of the first quadrant \mathcal{D} defined by $1 \le x^2 + y^2 \le 4$ and $1/10 \le xy \le 1/2$ and $y \ge x$. There is a change of coordinates G that takes the rectangle $[1, 4] \times [1/10, 1/2]$ in the *uv*-plane to \mathcal{D} , and the *inverse* of this change of coordinates is given by $G^{-1}(x, y) = (x^2 + y^2, xy)$.

- (a) What is the absolute value of the Jacobian of G^{-1} ? (It should be a function of x and y). Pay attention to signs!
- (b) Compute $\iint_{\mathcal{D}} y^2 x^2 \, \mathrm{d}A$
- (c) Bonus problem: Note that the system of inequalites $1 \le x^2 + y^2 \le 4$ and $1/10 \le xy \le 1/2$ defines four different regions of the plane. Each of these regions can be described by a change of coordinates G that takes the rectangle $[1, 4] \times [1/10, 1/2]$ in the *uv*-plane to the region where again *inverse* of this change of coordinates is given by $G^{-1}(x, y) = (x^2 + y^2, xy)$, but for each of these regions G itself has a different formula. Find all 4 formula for G and say which of these four regions goes with which formula.