1. (a) Find a change of coordinates map G that takes the unit square $[0,1] \times[0,1]$ to the parallelogram with vertices $(0,0),(2,1),(1,2)(3,3)$.
(b) Find the Jacobian of G.
(c) Find a change of coordinates map G^{\prime} that takes the unit square $[0,1] \times[0,1]$ to the parallelogram with vertices $(2,1),(4,2),(3,3),(5,4)$.
(d) Find the Jacobian of G^{\prime} and give a geometric explanation for the similarity between the Jacobian of G and that of G^{\prime}.
2. Consider the region \mathcal{D} defined by $1 \leq x^{2}-y^{2} \leq 4$ and $0 \leq y \leq \frac{3 x}{5}$. In this problem you'll set up an integral to compute $\iint_{\mathcal{D}} e^{x^{2}-y^{2}} \mathrm{~d} A$.
Consider the change of coordinates $G(u, v)=\left(\frac{v}{2}+\frac{u}{2 v}, \frac{v}{2}-\frac{u}{2 v}\right)$. Recall from class that the inverse of this coordinate change is given by $G^{-1}(x, y)=\left(x^{2}-y^{2}, x+y\right)$
(a) Find a region \mathcal{R} of the $u v$-plane so that $G: \mathcal{R} \rightarrow \mathcal{D}$ is a change of coordinates map (so G is onto and one-to-one on the interior of \mathcal{R}). Hint: Start by finding 4 curves in the $u v$-plane that map to the 4 curves forming the boundary of \mathcal{D}.
(b) Give an iterated integral in $u v$-coordinatees to compute $\iint_{D} e^{x^{2}-y^{2}} \mathrm{~d} A$ (No need to compute the actual integral, but it is an integral you can compute).
3. Consider the region of the part of the first quadrant \mathcal{D} defined by $1 \leq x^{2}+y^{2} \leq 4$ and $1 / 10 \leq x y \leq 1 / 2$ and $y \geq x$. There is a change of coordinates G that takes the rectangle $[1,4] \times[1 / 10,1 / 2]$ in the $u v$-plane to \mathcal{D}, and the inverse of this change of coordinates is given by $G^{-1}(x, y)=\left(x^{2}+y^{2}, x y\right)$.

(a) What is the absolute value of the Jacobian of G^{-1} ? (It should be a function of x and y). Pay attention to signs!
(b) Compute $\iint_{\mathcal{D}} y^{2}-x^{2} \mathrm{~d} A$
(c) Bonus problem: Note that the system of inequalites $1 \leq x^{2}+y^{2} \leq 4$ and $1 / 10 \leq x y \leq 1 / 2$ defines four different regions of the plane. Each of these regions can be described by a change of coordinates G that takes the rectangle $[1,4] \times[1 / 10,1 / 2]$ in the $u v$-plane to the region where again inverse of this change of coordinates is given by $G^{-1}(x, y)=\left(x^{2}+y^{2}, x y\right)$, but for each of these regions G itself has a different formula. Find all 4 formula for G and say which of these four regions goes with which formula.
