1. We showed that the circle of radius a has the concise description in polar coordinates as $r=a$.

Find a description of the circles $(x-a)^{2}+y^{2}=a^{2}$ and $x^{2}+(y-a)^{2}=a^{2}$ in polar coordinates. (What if a is negative?)

Solution

Before converting to polar coordinates, we can expand out the squares and simplify. The first circle satisfies the equation $x^{2}-2 a x+a^{2}+y^{2}=a^{2}$, which implies that

$$
\begin{equation*}
x^{2}+y^{2}=2 a x \tag{1}
\end{equation*}
$$

Similarly, we find that the second circle satisfies the equation

$$
\begin{equation*}
x^{2}+y^{2}=2 a y \tag{2}
\end{equation*}
$$

Noting that $r^{2}=x^{2}+y^{2}$, and that $x=r \cos (\theta), y=r \sin (\theta)$, we find that equation (1) becomes $r^{2}=2 \operatorname{ar} \cos (\theta)$, which implies that $r=2 a \cos (\theta)$, which is our polar description of the first circle. Similarly, (2) can be simplified to give us $r=2 a \sin (\theta)$. The sign of a just tells us where the circles are centered. For example if a is negative, the first circle will lie to the left and be tangent to the y-axis.
2. Compute the area inside the curves $r=\cos \theta$ and $r=\sin \theta$.

Solution

First, let's plot the region.

We see that the curves intersect at $\theta=\pi / 4$. The area of the region between the green segment and the blue curve $r=\sin (\theta)$ is precisely

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\sin (\theta)} r d r d \theta & =\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2}(\theta)}{2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{1-\cos (2 \theta)}{4} d \theta \\
& =\left[\frac{\theta}{4}-\frac{\sin (2 \theta)}{8}\right]_{0}^{\pi / 4} \\
& =\frac{\pi}{16}-\frac{1}{8}
\end{aligned}
$$

By symmetry, the total area should be twice this, so $A=\frac{\pi}{8}-\frac{1}{4}$
3. (a) Plot the curve $r=1+\cos (5 \theta)$ (it should look something like a flower).

Solution

First, it may be helpful to graph this function in the (θ, r) plane:

We see that $r \geq 0$, and $r=0$ when $\theta=\frac{\pi}{5}, \frac{3 \pi}{5}, \pi, \frac{7 \pi}{5}, \frac{9 \pi}{5}$. Each petal will lie between these angles where $r=0$. The petal on the x-axis is half drawn as we trace the curve from 0 to $\pi / 5$, and is completed when we trace the curve from $9 \pi / 5$ to 2π. Using this information, we can plot the curve in the (x, y) plane.

(b) Find the area of one "petal" of the curve $r=1+\cos 5 \theta$. You will probably need to use the double angle formula.

Solution

Let's calculate the area of the petal lying on the x-axis (by symmetry all petals should have the same area). One way we could do this is to find the area of the half of the petal lying above the
x-axis, and then double the result. Then

$$
\begin{aligned}
\text { Area of petal } & =2 \int_{0}^{\frac{\pi}{5}} \int_{0}^{1+\cos (5 \theta)} r d r d \theta \\
& =2 \int_{0}^{\frac{\pi}{5}} \frac{(1+\cos (5 \theta))^{2}}{2} d \theta \\
& =\int_{0}^{\frac{\pi}{5}}\left[1+2 \cos (5 \theta)+\cos ^{2}(5 \theta)\right] d \theta \\
& =\int_{0}^{\frac{\pi}{5}}\left[1+2 \cos (5 \theta)+\frac{1+\cos (10 \theta)}{2}\right] d \theta \\
& =\int_{0}^{\frac{\pi}{5}}\left[\frac{3}{2}+2 \cos (5 \theta)+\frac{\cos (10 \theta)}{2}\right] d \theta \\
& =\left[\frac{3 \theta}{2}+\frac{2 \sin (5 \theta)}{5}+\frac{\sin (10 \theta)}{20}\right]_{0}^{\pi / 5} \\
& =\frac{3 \pi}{10}
\end{aligned}
$$

4. If a solid in a region $\mathcal{W} \subset \mathbb{R}^{3}$ has density given by $\partial(x, y, z)$ then its mass is given by $\iiint_{\mathcal{W}} \partial(x, y, z) \mathrm{d} V$. Suppose that we are measuring in meters and consider a solid that is above the plane $z=0$, below the paraboloid $z=4-\left(x^{2}+y^{2}\right)$, and outside the cylinder $x^{2}+y^{2}=1$. Suppose that the density of this solid is inversely proportional to the distance from the z-axis and that the density of this solid along the boundary where the paraboloid hits the $x y$-plane is $1 / 2 \mathrm{~kg} / \mathrm{m}^{3}$.
Compute the mass of this solid.

Solution

Since the region W is z-simple, bounded below by $z=0$ and above by $z=4-x^{2}-y^{2}$, we need to find the projection of W onto the $x-y$ plane. The paraboloid and the z-axis intersect when $z=0$, which implies that $0=4-\left(x^{2}+y^{2}\right)$. Therefor the circle $x^{2}+y^{2}=4$ forms the outer boundary of the projection. The inner boundary is formed by the cylinder, which projects the circle $x^{2}+y^{2}=1$. Therefore our projection looks like

and the region on integration is between the red and green circles.
Next, let's figure out a formula for $\delta(x, y, z)$. We are told that δ is inversely proportional to the distance from the z-axis, so

$$
\delta(r)=\frac{C}{r}
$$

for some constant C. We also know that the density is $\frac{1}{2} \mathrm{~kg} / m^{2}$ when the paraboloid hits the xy-plane, which means that $\delta(2)=\frac{1}{2}$. This suggests that $C=1$, so $\delta(r)=\frac{1}{r}$. Finally, we'll set up the integral, and use cylindrical coordinates.

$$
\begin{aligned}
M & =\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{4-r^{2}} \frac{1}{r} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{1}^{2} 4-r^{2} d r d \theta \\
& =\int_{0}^{2 \pi}\left[4 r-\frac{r^{3}}{3}\right]_{1}^{2} d \theta \\
& =\int_{0}^{2 \pi} \frac{5}{3} d \theta \\
& =\frac{10 \pi}{3}
\end{aligned}
$$

5. In this problem you will find the area of the ellipse $(x / a)^{2}+(y / b)^{2}=1$. We'll use a distorted version of polar coordinates. We'll measure points in the plane by the angle θ the line from the origin to the point makes with the x-axis and the value of r for which the point lies on the ellipse $\left(\frac{x}{a r}\right)^{2}+\left(\frac{y}{b r}\right)^{2}=1$.
(a) Using these coordinates what point in the $x y$-plane does the value (r, θ) correspond to? See picture below:
(b) Describe the ellipse $(x / a)^{2}+(y / b)^{2}=1$ in these new "distorted polar coordinates". See picture below:
(c) What is the distortion factor for area with these coordinates?

For this, consider the map $(r, \theta) \mapsto(x(r, \theta), y(r, \theta))$ from the first part of the question. Differentiating this gives the matrix $\left[\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}\end{array}\right]$, and the area distortion factor at (r, θ) is the determinant of this matrix, the quantity $\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial y}{\partial r} \frac{\partial x}{\partial \theta}$. See the picture below.

(d) What is the area enclosed by this ellipse?

Solution
a Choose $x(r, \theta)=\operatorname{ar} \cos (\theta)$ and $y(r, \theta)=b r \sin (\theta)$. We can verify that $(x(r, \theta), y(r, \theta))$ lies on the ellipse by computing

$$
\begin{aligned}
\left(\frac{x(r, \theta)}{a r}\right)^{2}+\left(\frac{y(r, \theta)}{b r}\right)^{2} & =\cos ^{2}(\theta)+\sin ^{2}(\theta) \\
& =1,
\end{aligned}
$$

Note: It turns out that $(\operatorname{ar} \cos (\theta), b r \sin (\theta))$ is not the point of intersection between the ray making angle theta with the x -axis and the ellipse $\left(\frac{x}{a r}\right)^{2}+\left(\frac{y}{b r}\right)^{2}=1$ as the problem states. The actual point of intersection is

$$
(x, y)=\left(\frac{a b r \cos (\theta)}{\sqrt{a^{2} \sin ^{2}(\theta)+b^{2} \cos ^{2}(\theta)}}, \frac{a b r \sin (\theta)}{\sqrt{a^{2} \sin ^{2}(\theta)+b^{2} \cos ^{2}(\theta)}}\right),
$$

which can be computed by substituting $y=\tan (\theta) x$ into the equation for r-scaled ellipse. This transformation has a very messy Jacobian, and won't help us compute the area of the ellipse $(x / a)^{2}+(y / b)^{2}=1$. Instead, we will just define the map by $(x(r, \theta), y(r, \theta))=(\operatorname{arcos}(\theta), b r \sin (\theta))$, and ignore the geometric definition stated in the problem. All that matters is that our map transforms rectangles in the $r \theta$-plane (with height 2π) to ellipses in the $x y$-plane, which we will see is the case.
b The ellipse $(x / a)^{2}+(y / b)^{2}=1$ corresponds to the line segment $r=1,0 \leq \theta \leq 2 \pi$ in the $r \theta$ plane. This implies that if we mapped the whole region bounded by this ellipse to the $r \theta$ plane, we would form the rectangle $[0,1] \times[0,2 \pi]$, see below picture.
c In part (a) we found that

$$
\begin{aligned}
& x(r, \theta)=a r \cos (\theta) \\
& y(r, \theta)=b r \sin (\theta)
\end{aligned}
$$

Then the distortion factor is

$$
\begin{aligned}
\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial y}{\partial r} \frac{\partial x}{\partial \theta} & =(a \cos (\theta))(b r \cos (\theta))-(b \sin (\theta))(-a r \sin (\theta)) \\
& =a b r \cos ^{2}(\theta)+a b r \sin ^{2}(\theta) \\
& =a b r .
\end{aligned}
$$

d Call

$$
D=\left\{(x, y) \in \mathbb{R}^{2}:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2} \leq 1\right\},
$$

which represents the interior of the ellipse $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ in the xy-plane. In part (b), we found that D corresponds to the rectangle $D_{0}=[0,1] \times[0,2 \pi]$ in the $r \theta$ - plane. By the change of variables formula,

$$
\begin{aligned}
\text { Area of ellipse }=\iint_{D} 1 d x d y & =\iint_{D_{0}} 1\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} a b r d r d \theta \\
& =\int_{0}^{2 \pi} a b\left[\frac{r^{2}}{2}\right]_{0}^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{a b}{2} d \theta \\
& =\pi a b .
\end{aligned}
$$

a)

b)

