UCLA: Math 32B

1. We showed that the circle of radius *a* has the concise description in polar coordinates as r = a.

Find a description of the circles $(x - a)^2 + y^2 = a^2$ and $x^2 + (y - a)^2 = a^2$ in polar coordinates. (What if a is negative?)

Solution

Before converting to polar coordinates, we can expand out the squares and simplify. The first circle satisfies the equation $x^2 - 2ax + a^2 + y^2 = a^2$, which implies that

$$x^2 + y^2 = 2ax. (1)$$

Similarly, we find that the second circle satisfies the equation

$$x^2 + y^2 = 2ay.$$
 (2)

Noting that $r^2 = x^2 + y^2$, and that $x = r\cos(\theta)$, $y = r\sin(\theta)$, we find that equation (1) becomes $r^2 = 2ar\cos(\theta)$, which implies that $r = 2a\cos(\theta)$, which is our polar description of the first circle. Similarly, (2) can be simplified to give us $r = 2a\sin(\theta)$. The sign of *a* just tells us where the circles are centered. For example if *a* is negative, the first circle will lie to the left and be tangent to the y-axis.

2. Compute the area inside the curves $r = \cos \theta$ and $r = \sin \theta$.

Solution First, let's plot the region.

We see that the curves intersect at $\theta = \pi/4$. The area of the region between the green segment and the blue curve $r = \sin(\theta)$ is precisely

$$\int_0^{\frac{\pi}{4}} \int_0^{\sin(\theta)} r dr d\theta = \int_0^{\frac{\pi}{4}} \frac{\sin^2(\theta)}{2} d\theta$$
$$= \int_0^{\pi/4} \frac{1 - \cos(2\theta)}{4} d\theta$$
$$= \left[\frac{\theta}{4} - \frac{\sin(2\theta)}{8}\right]_0^{\pi/4}$$
$$= \frac{\pi}{16} - \frac{1}{8}.$$

By symmetry, the total area should be twice this, so $A = \frac{\pi}{8} - \frac{1}{4}$

3. (a) Plot the curve $r = 1 + \cos(5\theta)$ (it should look something like a flower).

We see that $r \ge 0$, and r = 0 when $\theta = \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}$. Each petal will lie between these angles where r = 0. The petal on the x-axis is half drawn as we trace the curve from 0 to $\pi/5$, and is completed when we trace the curve from $9\pi/5$ to 2π . Using this information, we can plot the curve in the (x,y) plane.

(b) Find the area of one "petal" of the curve $r = 1 + \cos 5\theta$. You will probably need to use the double angle formula.

Solution

Let's calculate the area of the petal lying on the x-axis (by symmetry all petals should have the same area). One way we could do this is to find the area of the half of the petal lying above the

x-axis, and then double the result. Then

Area of petal =
$$2 \int_{0}^{\frac{\pi}{5}} \int_{0}^{1+\cos(5\theta)} r dr d\theta$$

= $2 \int_{0}^{\frac{\pi}{5}} \frac{(1+\cos(5\theta))^{2}}{2} d\theta$
= $\int_{0}^{\frac{\pi}{5}} \left[1+2\cos(5\theta)+\cos^{2}(5\theta)\right] d\theta$
= $\int_{0}^{\frac{\pi}{5}} \left[1+2\cos(5\theta)+\frac{1+\cos(10\theta)}{2}\right] d\theta$
= $\int_{0}^{\frac{\pi}{5}} \left[\frac{3}{2}+2\cos(5\theta)+\frac{\cos(10\theta)}{2}\right] d\theta$
= $\left[\frac{3\theta}{2}+\frac{2\sin(5\theta)}{5}+\frac{\sin(10\theta)}{20}\right]_{0}^{\pi/5}$
= $\frac{3\pi}{10}$.

4. If a solid in a region $\mathcal{W} \subset \mathbb{R}^3$ has density given by $\partial(x, y, z)$ then its mass is given by $\iiint_{\mathcal{W}} \partial(x, y, z) \, \mathrm{d}V$.

Suppose that we are measuring in meters and consider a solid that is above the plane z = 0, below the paraboloid $z = 4 - (x^2 + y^2)$, and outside the cylinder $x^2 + y^2 = 1$. Suppose that the density of this solid is inversely proportional to the distance from the z-axis and that the density of this solid along the boundary where the paraboloid hits the xy-plane is $1/2 kg/m^3$.

Compute the mass of this solid.

Solution

Since the region W is z-simple, bounded below by z = 0 and above by $z = 4 - x^2 - y^2$, we need to find the projection of W onto the x - y plane. The paraboloid and the z-axis intersect when z = 0, which implies that $0 = 4 - (x^2 + y^2)$. Therefore the circle $x^2 + y^2 = 4$ forms the outer boundary of the projection. The inner boundary is formed by the cylinder, which projects the circle $x^2 + y^2 = 1$. Therefore our projection looks like

and the region on integration is between the red and green circles.

Next, let's figure out a formula for $\delta(x, y, z)$. We are told that δ is inversely proportional to the distance from the z-axis, so

$$\delta(r) = \frac{C}{r}$$

for some constant C. We also know that the density is $\frac{1}{2} \text{ kg}/m^2$ when the paraboloid hits the xy-plane, which means that $\delta(2) = \frac{1}{2}$. This suggests that C = 1, so $\delta(r) = \frac{1}{r}$. Finally, we'll set up the integral, and use cylindrical coordinates.

$$M = \int_{0}^{2\pi} \int_{1}^{2} \int_{0}^{4-r^{2}} \frac{1}{r} r dz dr d\theta$$

= $\int_{0}^{2\pi} \int_{1}^{2} 4 - r^{2} dr d\theta$
= $\int_{0}^{2\pi} \left[4r - \frac{r^{3}}{3} \right]_{1}^{2} d\theta$
= $\int_{0}^{2\pi} \frac{5}{3} d\theta$
= $\frac{10\pi}{3}$

- 5. In this problem you will find the area of the ellipse $(x/a)^2 + (y/b)^2 = 1$. We'll use a distorted version of polar coordinates. We'll measure points in the plane by the angle θ the line from the origin to the point makes with the x-axis and the value of r for which the point lies on the ellipse $\left(\frac{x}{ar}\right)^2 + \left(\frac{y}{br}\right)^2 = 1$.
 - (a) Using these coordinates what point in the xy-plane does the value (r, θ) correspond to? See picture below:
 - (b) Describe the ellipse $(x/a)^2 + (y/b)^2 = 1$ in these new "distorted polar coordinates". See picture below:
 - (c) What is the distortion factor for area with these coordinates? For this, consider the map $(r, \theta) \mapsto (x(r, \theta), y(r, \theta))$ from the first part of the question. Differentiat- $\begin{bmatrix} \partial x & \partial y \end{bmatrix}$
 - ing this gives the matrix $\begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{bmatrix}$, and the area distortion factor at (r, θ) is the determinant of this matrix, the quantity $\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta} \frac{\partial y}{\partial r} \frac{\partial x}{\partial \theta}$. See the picture below.

(d) What is the area enclosed by this ellipse? *Solution*

a Choose $x(r,\theta) = ar\cos(\theta)$ and $y(r,\theta) = br\sin(\theta)$. We can verify that $(x(r,\theta), y(r,\theta))$ lies on the ellipse by computing

$$\left(\frac{x(r,\theta)}{ar}\right)^2 + \left(\frac{y(r,\theta)}{br}\right)^2 = \cos^2(\theta) + \sin^2(\theta)$$
$$= 1,$$

Note: It turns out that $(ar \cos(\theta), br \sin(\theta))$ is not the point of intersection between the ray making angle *theta* with the x-axis and the ellipse $\left(\frac{x}{ar}\right)^2 + \left(\frac{y}{br}\right)^2 = 1$ as the problem states. The actual point of intersection is

$$(x,y) = \left(\frac{abr\cos(\theta)}{\sqrt{a^2\sin^2(\theta) + b^2\cos^2(\theta)}}, \frac{abr\sin(\theta)}{\sqrt{a^2\sin^2(\theta) + b^2\cos^2(\theta)}}\right)$$

which can be computed by substituting $y = \tan(\theta)x$ into the equation for r-scaled ellipse. This transformation has a very messy Jacobian, and won't help us compute the area of the ellipse $(x/a)^2 + (y/b)^2 = 1$. Instead, we will just define the map by $(x(r,\theta), y(r,\theta)) = (ar\cos(\theta), br\sin(\theta))$, and ignore the geometric definition stated in the problem. All that matters is that our map transforms rectangles in the $r\theta$ -plane (with height 2π) to ellipses in the xy - plane, which we will see is the case.

b The ellipse $(x/a)^2 + (y/b)^2 = 1$ corresponds to the line segment $r = 1, 0 \le \theta \le 2\pi$ in the $r\theta$ plane. This implies that if we mapped the whole region bounded by this ellipse to the $r\theta$ plane, we would form the rectangle $[0, 1] \times [0, 2\pi]$, see below picture. c In part (a) we found that

$$x(r, \theta) = ar \cos(\theta)$$

 $y(r, \theta) = br \sin(\theta)$

Then the distortion factor is

$$\frac{\partial x}{\partial r}\frac{\partial y}{\partial \theta} - \frac{\partial y}{\partial r}\frac{\partial x}{\partial \theta} = (a\cos(\theta))(br\cos(\theta)) - (b\sin(\theta))(-ar\sin(\theta))$$
$$= abr\cos^2(\theta) + abr\sin^2(\theta)$$
$$= abr.$$

d Call

$$D = \left\{ (x, y) \in \mathbb{R}^2 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1 \right\},\$$

which represents the interior of the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$ in the xy-plane. In part (b), we found that D corresponds to the rectangle $D_0 = [0, 1] \times [0, 2\pi]$ in the $r\theta$ - plane. By the change of variables formula,

Area of ellipse =
$$\int \int_{D} 1 dx dy = \int \int_{D_0} 1 \left| \frac{\partial(x, y)}{\partial(r, \theta)} \right| dr d\theta$$
$$= \int_0^{2\pi} \int_0^1 a b r dr d\theta$$
$$= \int_0^{2\pi} a b \left[\frac{r^2}{2} \right]_0^1 d\theta$$
$$= \int_0^{2\pi} \frac{a b}{2} d\theta$$
$$= \pi a b.$$

