- 1. We showed that the circle of radius a has the concise description in polar coordinates as r = a. Find a description of the circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y-a)^2 = a^2$ in polar coordinates. (What if a is negative?)
- 2. Compute the area inside the curves $r = \cos \theta$ and $r = \sin \theta$.

- 3. (a) Plot the curve $r = 1 + \cos(5\theta)$ (it should look something like a flower).
 - (b) Find the area of one "petal" of the curve $r = 1 + \cos 5\theta$. You will probably need to use the double angle formula.
- 4. If a solid in a region $\mathcal{W} \subset \mathbb{R}^3$ has density given by $\partial(x, y, z)$ then its mass is given by $\iiint_{\mathcal{W}} \partial(x, y, z) \, \mathrm{d}V$. Suppose that we are measuring in meters and consider a solid that is above the plane z = 0, below the paraboloid $z = 4 - (x^2 + y^2)$, and outside the cylinder $x^2 + y^2 = 1$. Suppose that the density of this solid is inversely proportional to the distance from the z-axis and that the density of this solid along the boundary where the paraboloid hits the xy-plane is $1/2 kg/m^3$.

Compute the mass of this solid.

- 5. In this problem you will find the area of the ellipse $(x/a)^2 + (y/b)^2 = 1$. We'll use a distorted version of polar coordinates. We'll measure points in the plane by the angle θ the line from the origin to the point makes with the x-axis and the value of r for which the point lies on the ellipse $\left(\frac{x}{ar}\right)^2 + \left(\frac{y}{br}\right)^2 = 1$.
 - (a) Using these coordinates what point in the xy-plane does the value (r, θ) correspond to?
 - (b) Describe the ellipse $(x/a)^2 + (y/b)^2 = 1$ in these new "distorted polar coordinates".
 - (c) What is the distortion factor for area with these coordinates?
 - For this, consider the map $(r, \theta) \mapsto (x(r, \theta), y(r, \theta))$ from the first part of the question. Differentiating
 - this gives the matrix $\begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{bmatrix}$, and the area distortion factor at (r,θ) is the determinant of this

(d) What is the area enclosed by this ellipse?