1. We showed that the circle of radius a has the concise description in polar coordinates as $r=a$.

Find a description of the circles $(x-a)^{2}+y^{2}=a^{2}$ and $x^{2}+(y-a)^{2}=a^{2}$ in polar coordinates. (What if a is negative?)
2. Compute the area inside the curves $r=\cos \theta$ and $r=\sin \theta$.
3. (a) Plot the curve $r=1+\cos (5 \theta)$ (it should look something like a flower).
(b) Find the area of one "petal" of the curve $r=1+\cos 5 \theta$. You will probably need to use the double angle formula.
4. If a solid in a region $\mathcal{W} \subset \mathbb{R}^{3}$ has density given by $\partial(x, y, z)$ then its mass is given by $\iiint_{\mathcal{W}} \partial(x, y, z) \mathrm{d} V$. Suppose that we are measuring in meters and consider a solid that is above the plane $z=0$, below the paraboloid $z=4-\left(x^{2}+y^{2}\right)$, and outside the cylinder $x^{2}+y^{2}=1$. Suppose that the density of this solid is inversely proportional to the distance from the z-axis and that the density of this solid along the boundary where the paraboloid hits the $x y$-plane is $1 / 2 \mathrm{~kg} / \mathrm{m}^{3}$.
Compute the mass of this solid.
5. In this problem you will find the area of the ellipse $(x / a)^{2}+(y / b)^{2}=1$. We'll use a distorted version of polar coordinates. We'll measure points in the plane by the angle θ the line from the origin to the point makes with the x-axis and the value of r for which the point lies on the ellipse $\left(\frac{x}{a r}\right)^{2}+\left(\frac{y}{b r}\right)^{2}=1$.
(a) Using these coordinates what point in the $x y$-plane does the value (r, θ) correspond to?
(b) Describe the ellipse $(x / a)^{2}+(y / b)^{2}=1$ in these new "distorted polar coordinates".
(c) What is the distortion factor for area with these coordinates?

For this, consider the map $(r, \theta) \mapsto(x(r, \theta), y(r, \theta))$ from the first part of the question. Differentiating this gives the matrix $\left[\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}\end{array}\right]$, and the area distortion factor at (r, θ) is the determinant of this
matrix, the quantity $\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial y}{\partial r} \frac{\partial x}{\partial \theta}$. See the picture below.

the ares of the square
$[0,1] \times[0,1]$ under the this mapis

$$
\partial x / \partial r \cdot \partial y / \partial \theta-\frac{\partial y}{\partial r} \cdot \frac{\partial x}{\partial \theta}
$$

(d) What is the area enclosed by this ellipse?

