- 1. Let \mathcal{D} be the region in the first quadrant of the plane bounded by the curves y = x and $y = x^3$. Write the integral $\int \int_{\mathcal{D}} f(x, y) \, dA$ in the two possible orders.
- 2. Let \mathcal{D} be the region in the plane bounded by the lines y = 0, x = 0, y = 1, and y = -x + 2. Write the double integral $\int \int_{\mathcal{D}} f(x, y) \, dA$ as an iterated integral in both possible orders. Which is probably going to be less work to compute?
- 3. Compute the double integral $\int \int_{\mathcal{D}} \sqrt{y^3 + 1} \, dA$ where \mathcal{D} is the region of the first quadrant bounded by y = 1 and $y = \sqrt{x}$. Try to compute it in both orders- is one way easier than the other?

4. Compute the integral
$$\int_0^1 \int_{-\sqrt{1-x^2}}^0 2x \cos(y - y^3/3) \, \mathrm{d}y \, \mathrm{d}x.$$

- 5. In this problem you'll compute the triple integral $\int \int \int_{\mathcal{W}} y \, dV$ where \mathcal{W} is the volume bounded between the paraboloids $z = x^2 + y^2$ and $z = 4 (x^2 + y^2)$.
 - (a) Draw a sketch of this region.
 - (b) Observe that this region is z-simple and compute the projection of the region in the xy-plane.
 - (c) Write the integral $\int \int \int_{\mathcal{W}} y \, dV$ as an iterated integral. Since you described the region as z-simple you will write this integral as $dz \, dx \, dy$ or $dz \, dy \, dx$.
 - (d) Compute the integral $\int \int \int_{\mathcal{W}} \int \int_{\mathcal{W}} y \, dV$. One of the two ways to set up this integral is much easier to compute than the other– why?