Upload your solutions to gradescope for the following questions by 11:59pm LA time on Sunday 17 April.

- Late exams will not be accepted.
- Your scans must be readable and good quality. Use good lighting and a scanning app.
- Questions 1,2,3,4 must begin on a new page and questions must be allocated correctly on Gradescope.
- Write your solutions **linearly**. We should be able to easily read your solutions and do not want to hunt around the page for it.
- 1. The twisted cubic is the curve in \mathbb{R}^3 that is the intersection of the surfaces $y=x^2$ and $z=x^3$. Let \mathcal{C} be the part of the twisted cubic where $x \in [0,1]$. Let $f(x,y,z) = (1+4y+9xz)^{-\frac{1}{2}}$.
 - (a) (2 points) Find a parametrisation of the curve C, making sure to indicate the range of t. Hint: If (x, y, z) is a point on the curve where x = t, then $y = t^2$ and $z = \ldots$

Solution: $\mathbf{r}(t) = (t, t^2, t^3)$ for $t \in [0, 1]$.

(b) (3 points) Evaluate the integral

$$\int_{\mathcal{C}} f(x, y, z) \ ds$$

Solution: We know that $\int_{\mathcal{C}} f(x, y, z) \ ds = \int_{0}^{1} f(r(t)) ||r'(t)|| \ dt$. Since $r'(t) = \langle 1, 2t, 3t^{2} \rangle$ we see that $||r'(t)|| = \sqrt{1 + 4t^{2} + 9t^{4}}$. We also see that $f(r(t)) = \frac{1}{\sqrt{1 + 4t^{2} + 9t^{4}}}$. So, $\int_{\mathcal{C}} f(x, y, z) \ ds = \int_{0}^{1} 1 \ dt = 1$.

- 2. Consider the solid ellipsoid E given by $(x/2)^2 + (y/3)^2 + (z/4)^2 \le 1$ measured in meters with density function given by $\delta(x, y, z) = \sqrt{(x/2)^2 + (y/3)^2 + (z/4)^2} \, kg/m^3$.
 - (a) (2 points) Find a change of coordinates G so that G applied to the solid ball of radius 1 centered at the origin gives E. Hint: your map G should change the equation for a sphere into the equation of the ellipsoid.

Solution: The coordinate change with u = x/2, v = y/3, w = z/4 does the trick. So, we have that G(u, v, w) = (2u, 3v, 4w). Substituting u, v, w into our equation for the ellipse gives the solid ball as desired.

(b) (4 points) What is the mass of E?

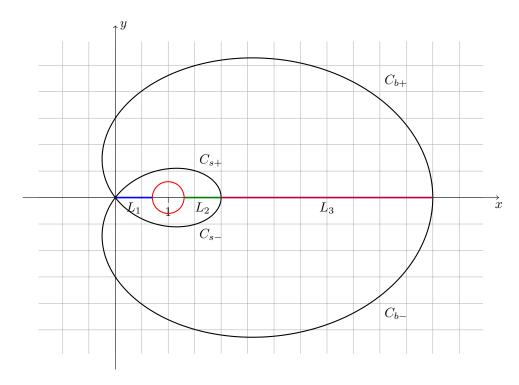
Solution: We want to compute $\iiint_E \sqrt{(x/2)^2 + (y/3)^2 + (z/4)^2} \ dV$. By the change of coordinates theorem this is $\iiint_B \sqrt{u^2 + v^2 + w^2} |J(G)| \ dV$ where B is the solid ball of radius one centered at the origin. The Jacobian of G is 24, so after converting the second integral to spherical coordinates we have that

$$\iiint_E \sqrt{(x/2)^2 + (y/3)^2 + (z/4)^2} \, dV = 24 \int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^3 \sin \phi \, d\rho \, d\phi \, d\theta.$$

This is readily computed to give that the mass is 24π kilograms.

3. In this question assume that **E** is a vector field defined on the whole of \mathbb{R}^2 , apart from the point (1,0). Suppose that $\nabla \times \mathbf{E} = 0$. The function $\mathbf{r}(t) = (2\cos t + 4\cos^2 t, 2\sin t + 4\cos t\sin t)$ for $t \in [-\frac{2\pi}{3}, \frac{4\pi}{3}]$

traces out the curve C on the graph below. To give you an idea: it starts at the origin, traces out the large loop, returns to the origin when $t = 2\pi/3$, then traces out the small loop and then returns to the origin once more.



(a) (2 points) Redraw the above graph and indicate the orientation of the curve. *Hint: calculating some tangent vectors might help.*

Solution: The curve is oriented counterclockwise about both loops.

(b) (4 points) Let \mathcal{A} be the circle radius $\frac{1}{2}$, and centre (1,0) (so it fits entirely within the small loop above) oriented counter clockwise. Suppose that

$$\int_{\mathcal{A}} \mathbf{E} \cdot d\mathbf{r} = 2$$

What is $\int_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{r}$? Justify your answer carefully, the answer itself will only be worth 1 point.

Solution: The strategy will be to use the fact that the curl of \mathbf{E} is zero. So on any simply connected domain \mathbf{E} is conservative and thus integrals of \mathbf{E} are path independent in these domains. The two domains we will use are the upper and lower half planes. Accordingly we will split up the curve \mathcal{C} into four parts, first the big loop C_b into C_{b+} and C_{b-} the parts above and below the x-axis respectively. Similarly the small loop, C_s is split into C_{s+} and C_{s-} . We also split \mathcal{A} into A_+ and A_- . Thus we have $\mathcal{C} = C_{b-} + C_{b+} + C_{s-} + C_{s+}$. We will come up with an expression for the integral of each of the four parts.

First we concentrate on C_{b+} . To relate this to A, let L_1, L_2 and L_3 be the lines indicated above in the diagram, with orientations pointing to the left. Thus by path independence

$$\int_{C_{b+}} \mathbf{E} \cdot d\mathbf{r} = \int_{L_3 + L_2 + A_+ + L_1} \mathbf{E} \cdot d\mathbf{r} = \int_{L_3} \mathbf{E} \cdot d\mathbf{r} + \int_{L_2} \mathbf{E} \cdot d\mathbf{r} + \int_{A_+} \mathbf{E} \cdot d\mathbf{r} + \int_{L_1} \mathbf{E} \cdot d\mathbf{r}$$

We get similar expressions

$$\begin{split} &\int_{C_{b-}} \mathbf{E} \cdot d\mathbf{r} = \int_{-L_1 + A_- - L_2 - L_3} \mathbf{E} \cdot d\mathbf{r} = -\int_{L_1} \mathbf{E} \cdot d\mathbf{r} + \int_{A_-} \mathbf{E} \cdot d\mathbf{r} - \int_{L_2} \mathbf{E} \cdot d\mathbf{r} - \int_{L_3} \mathbf{E} \cdot d\mathbf{r} \\ &\int_{C_{s+}} \mathbf{E} \cdot d\mathbf{r} = \int_{L_2 + A_+ + L_1} \mathbf{E} \cdot d\mathbf{r} = \int_{L_2} \mathbf{E} \cdot d\mathbf{r} + \int_{A_+} \mathbf{E} \cdot d\mathbf{r} + \int_{L_1} \mathbf{E} \cdot d\mathbf{r} \\ &\int_{C_{s-}} \mathbf{E} \cdot d\mathbf{r} = \int_{-L_1 + A_- - L_2} \mathbf{E} \cdot d\mathbf{r} = -\int_{L_1} \mathbf{E} \cdot d\mathbf{r} + \int_{A_-} \mathbf{E} \cdot d\mathbf{r} - \int_{L_3} \mathbf{E} \cdot d\mathbf{r} \end{split}$$

Adding these all up gives

$$\oint_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{r} = \int_{A} \mathbf{E} \cdot d\mathbf{r} + \int_{A} \mathbf{E} \cdot d\mathbf{r} = 2 + 2 = 4$$

4. (6 points) Consider the vortex field $\mathbf{F} = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$ and the curve \mathcal{C} given by $y = x^4 - 14$ where $-2 \le x \le 2$ and the curve is oriented from left to right. Evaluate

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}.$$

Solution: If we try and do this directly, we would use the parameterisation $(t, t^4 - 14)$ for $t \in [-2, 2]$ and get the integral

$$\int_{-2}^{2} \frac{14 + 3t^4}{t^2 + (t^4 - 14)^2} dt = \int_{-2}^{2} \frac{14 + 3t^4}{196 + t^2 - 28t^4 + t^8} dt$$

which will be very difficult to do even by partial fractions. We need to find another way.

We will introduce a new curve \mathcal{H} which is the circle $x^2 + y^2 = 8$ restricted to those points where $\theta \in [\pi/4, 3\pi/4]$, oriented right to left. Then $\mathcal{C} + \mathcal{H}$ is a loop that goes around the origin. Standard arguments mean that

$$\int_{\mathcal{C}+\mathcal{H}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{H}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 2\pi$$

where C_1 is the counter clockwise circle about the origin of radius one. Thus

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 2\pi - \int_{\mathcal{H}} \mathbf{F} \cdot d\mathbf{r}.$$

We can parameterise \mathcal{H} by $\mathbf{r}(t) = (2\sqrt{2}\cos t, 2\sqrt{2}\sin t)$ for $t \in [\pi/4, 3\pi/4]$. Then $\mathbf{r}'(t) = \langle -2\sqrt{2}\sin t, 2\sqrt{2}\cos t \rangle$, and noting that $r^2 = 8$ we get

$$\int_{\mathcal{H}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{8} \int_{\pi/4}^{3\pi/4} 8\sin^2 t + 8\cos^2 t \, dt = \frac{\pi}{2}$$

Hence

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \frac{3\pi}{2}.$$