Upload your solutions to gradescope for the following questions by 11:59pm LA time on Wednesday 22 April.

- Late exams will not be accepted.
- Your scans must be readable and good quality. Use good lighting and a scanning app.
- Questions $1,2,3$ must begin on a new page and questions must be allocated correctly on Gradescope.
- Write your solutions linearly. We should be able to easily read your solutions and do not want to hunt around the page for it.
- Be sure to show your work and justify your answers.

1. 2. In this question we will first consider the region \mathcal{C} that is bounded by $y=x(4-x)$ and $y=2 x$.
(a) (1) Sketch the region clearly.

(b) (2) Write the integral

$$
\iint_{\mathcal{C}} x d A
$$

as iterated integrals in both orders $d x d y$ and $d y d x$ (no need to evaluate the integral).

Solution:

Note that these curves intersect at $(0,0)$ and at $(2,4)$, and that when $0 \leq x \leq 2$ the curve $y=2 x$ is below the curve $y=x(4-x)$.
When we solve these functions for x we get that $x=y / 2$ and (since $y=x(4-x)=$ $\left.-(x-2)^{2}+4\right)$ thant $x= \pm \sqrt{4-y}+2$. In this region (since x is ranging from 0 to 2) we need to pick the negative branch of the square root.
So, the integral is $\int_{0}^{2} \int_{2 x}^{x(4-x)} x \mathrm{~d} y \mathrm{~d} x$ and $\int_{0}^{4} \int_{-\sqrt{4-y}+2}^{y / 2} x \mathrm{~d} x \mathrm{~d} y$.
2. Now, consider the region \mathcal{D} given by the inequalities

- $0 \leq x+y \leq 2$,
- $0 \leq y-x$, and
- $-2 \leq x$.
(a) (1) Sketch the region clearly in the $x y$-plane.

(b) (3) Let $u=x+y$ and $v=y-x$, and use this change of coordinates to express the integral

$$
\iint_{\mathcal{D}} 2 x+2 y d A
$$

as an iterated integral of u and v (no need to evaluate the integral). Make sure you sketch the region in the $u v$-plane that you are integrating over. Hint: the region you will be integrating over in the uv-plane is not a rectangle.

Solution: Since $u=x+y$ and $v=y-x$, we see that $(u-v)=2 x$. So, in the $u v$-plane our region is $0 \leq u \leq 2,0 \leq v$, and $-2 \leq(u-v) / 2$, so $v \leq u+4$.

So, our region looks like:

The Jacobian of this change of the inverse change of coordinates is 2, so the Jacobian of this change of coordinates is $1 / 2$ and our integral is $\int_{0}^{2} \int_{0}^{u+4}(u) \mathrm{d} v \mathrm{~d} u$.
2. In this question we will consider the region \mathcal{D} given by $-1 \leq y \leq 1$ and $\sqrt{2-y^{2}} \leq x \leq 1+\sqrt{1-y^{2}}$.
(a) (2) Sketch the region \mathcal{D} in the $x y$-plane. Make sure your drawing is large and clear.

(b) (3) Write the area of \mathcal{D} as an interated integral in polar coordinates (no need to evaluate the integral).

Solution: Note that our region can be desribed as the points inisde the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=2$. In polar coordinates these curves are respectively $r=2 \cos \theta$ and $r=\sqrt{2}$. The θ values where these circles intersect are solutions to $2 \cos (\theta)=\sqrt{2}$, so at $\theta= \pm \pi / 4$. So, the area is $\int_{-\pi / 4}^{\pi / 4} \int_{\sqrt{2}}^{2 \cos \theta} r \mathrm{~d} r \mathrm{~d} \theta$.
3. Consider the region \mathcal{E} that is bounded by the surface $z=y-x^{2}$ and the planes $1-y-z=0$ and $y=1$.
(a) (2) Describe the region in the form

$$
\mathcal{E}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \in \mathcal{D}, z_{1}(x, y) \leq z \leq z_{2}(x, y)\right\}
$$

for \mathcal{D} a region in the $x y$-plane. Your answer should specify what \mathcal{D} is.
Solution: Here is picture of what these three surfaces look like.

We need to figure out where these surfaces intersect. The surfaces $z=y-x^{2}$ and $z=1-y$ intsersect where (x, y) satisfy $1-y=y-x^{2}$, or $y=\frac{1+x^{2}}{2}$. Note alo that the planes $1-y-z=0$ and $y=1$ intersect in the $x y$-plane along the line $y=1$.
So, the projection of this region to the $x y$ plane is bounded by $y=\frac{1+x^{2}}{2}$ and $y=1$, which we can describe as the region $\mathcal{D}=\left\{(x, y):-1 \leq x \leq 1, \frac{1+x^{2}}{2} \leq y \leq 1\right.$. Note that over \mathcal{D} that since $\frac{1+x^{2}}{2} \leq y$, then $1+x^{2} \leq 2 y$, so $1-y \leq y-x^{2}$, therefore over this region we conclude that $1-y \leq z \leq y-x^{2}$.
So, we can describe this region as $\left\{(x, y, z):(x, y) \in \mathcal{D}, 1-y \leq z \leq y-x^{2}\right.$.

(b) (3) Compute the volume of the region \mathcal{E}.

Solution: To compute the volume of \mathcal{E} we just need to compute the integral $\iiint_{\mathcal{E}} 1 d V$.

$$
\begin{aligned}
\operatorname{Vol}(\mathcal{E}) & =\iiint_{\mathcal{E}} 1 d V \\
& =\iint_{\mathcal{D}} \int_{1-y}^{y-x^{2}} 1 d z d A \\
& =\int_{-1}^{1} \int_{\frac{1+x^{2}}{2}}^{1} \int_{1-y}^{y-x^{2}} 1 d z d y d x \text { (write as an iterated integral) } \\
& =\int_{-1}^{1} \int_{\frac{1+x^{2}}{2}}^{1} 2 y-x^{2}-1 d y d x \text { (compute the first integral) } \\
& =\int_{-1}^{1} y^{2}-x^{2} y-\left.y\right|_{y=\frac{x^{2}+1}{2}} ^{1} d x \text { (compute the second integral) } \\
& =\int_{-1}^{1}-x^{2}-\left(\frac{\left(x^{2}+1\right)^{2}}{4}-x^{2} \frac{1+x^{2}}{2}-\frac{1+x^{2}}{2}\right) d x \\
& =\int_{-1}^{1} x^{4} / 4-x^{2} / 2+1 / 4 d x \text { (simplify) } \\
& =x^{5} / 20-x^{3} / 6+x /\left.4\right|_{-1} ^{1} \\
& =2 / 20-2 / 6+1 / 2 \\
& =4 / 15
\end{aligned}
$$

