Final exam (practice 1)
 UCLA: Math 32B, Fall 2019

Instructor: Noah White
Date:

- This exam has 7 questions, for a total of 80 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.
- Non programmable and non graphing calculators are allowed.

Name: \qquad

ID number: \qquad

Question	Points	Score
1	12	
2	12	
3	12	
4	13	
5	10	
6	11	
7	10	
Total:	80	

Questions 1 and 2 are multiple choice. Once you are satisfied with your solutions, indicate your answers by marking the corresponding box in the table below.

Please note! The following four pages will not be graded. You must indicate your answers here for them to be graded!

Question 1.

Part	A	B	C	D
(a)				
(b)				
(c)				
(d)				
(e)				
(f)				

Question 2.

Part	A	B	C	D
(a)				
(b)				
(c)				
(d)				
(e)				
(f)				

Here are some formulas that you may find useful as some point in the exam.

$$
\begin{gathered}
\int \cos ^{2} x \mathrm{~d} x=\frac{1}{2}(x+\cos x \sin x) \\
\int \sin ^{2} x \mathrm{~d} x=\frac{1}{2}(x-\cos x \sin x) \\
\int \sin x \cos x \mathrm{~d} x=\frac{1}{2} \sin ^{2} x \\
\int_{0}^{\pi} \sin ^{3} d x=\frac{4}{3}
\end{gathered}
$$

Spherical coordinates are given by

$$
\begin{aligned}
& x(\rho, \theta, \phi)=\rho \cos \theta \sin \phi \\
& y(\rho, \theta, \phi)=\rho \sin \theta \sin \phi \\
& z(\rho, \theta, \phi)=\rho \cos \phi
\end{aligned}
$$

The Jacobian for the change of coordinates is $J=\rho^{2} \sin \phi$.
The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.

1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
(a) (2 points) Calculate the curl of $\langle-y, x, y-x\rangle$
A. $\langle 1,1,2\rangle$
B. $\langle 1,2,1\rangle$
C. $\langle 2,1,1\rangle$
D. $\langle 0,0,1\rangle$
(b) (2 points) Integrate $f(x, y)=x^{3} \sin y$ in the region $\mathcal{R}=[-1,1] \times[0,4]$
A. π
B. $-\pi$
C. 1
D. 0
(c) (2 points) Integrate the function $f(x, y)=12 x y$ on the region \mathcal{D} bounded by $y=x^{2}$ and $y=\sqrt{x}$.
A. 1
B. 2
C. 0
D. 6
(d) (2 points) The Jacobian of the function $G(u, v, w)=\left(\sin u, u^{2}+v^{2}, \ln (v w)\right)$
A. $\frac{2 v \cos u}{u}$
B. $\frac{u \cos v}{w}$
C. $\frac{2 u \cos u}{v}$
D. $\frac{2 v \cos u}{w}$
(e) (2 points) Integrate $\sqrt{x^{2}+y^{2}}$ over the ball $x^{2}+y^{2}+z^{2} \leq 4$.
A. $\frac{4 \pi^{2}}{3}$
B. $4 \pi^{2}$
C. $\frac{4}{3}$
D. $\frac{4 \pi}{3}$
(f) (2 points) Calculate the line integral of $f(x, y)=1$ along the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
A. $2+\sqrt{2}$.
B. $2-\sqrt{2}$.
C. 2 .
D. -2 .
2. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
(a) (2 points) Suppose that \mathbf{F} is a vector field such that $\mathbf{F} \cdot\langle x, y\rangle>0$ for all $(x, y) \neq(0,0)$. Let \mathcal{C} be the unit circle oriented counter clockwise. The flux through \mathcal{C} of the vector field \mathbf{F} is
A. greater than and sometimes equal to zero.
B. less than and sometimes equal to zero.
C. always greater than zero.
D. always less than zero.
(b) (2 points) The vector field $r^{-4}\langle x, y\rangle$ where $r^{2}=x^{2}+y^{2}$, has domain $\mathbb{R}^{2}-\{(0,0)\}$. The vector field
A. has zero curl and is conservative.
B. has non zero curl and is conservative.
C. has zero curl and is not conservative.
D. has non zero curl and is not conservative.
(c) (2 points) Suppose $\varphi(x, y)$ is a scalar function defined on \mathbb{R}^{2} with the property that $\varphi(-3,0)=5$ and $\varphi(3,0)=3$. Let $\mathbf{F}=\nabla \varphi$. What is the value of $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}$ if \mathcal{C} is the top half of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{2}=1
$$

oriented counter clockwise.
A. Not enough information.
B. 0 .
C. -2 .
D. 2 .
(d) (2 points) Consider the surface \mathcal{S} parametrised by $G(u, v)=\left(v^{2}, u v, u+v\right)$. Which of these vectors is tangent to the surface at the point $(1,1,2)$?
A. $\langle 2,-1,1\rangle$
B. $\langle 1,-1,1\rangle$.
C. $\langle 1,1,0\rangle$.
D. $\langle 4,-1,-1\rangle$.
(e) (2 points) Suppose \mathbf{F} has $\operatorname{div}(\mathbf{F})=1$. What is the (outward) flux of \mathbf{F} through the sphere

$$
x^{2}+y^{2}+z^{2}=4 ?
$$

A. $32 \pi / 3$.
B. $4 \pi / 3$.
C. $-\pi / 3$.
D. $12 \pi / 3$.
(f) (2 points) Let \mathcal{C}_{1} be the unit circle, and \mathcal{C}_{2} the circle of radius 2 , both oriented counter clockwise, and centered at the origin. Let \mathcal{D} be annulus between these circles. If $\mathbf{F}=\langle x-y, x y\rangle$, the integral $\oint_{\mathcal{C}_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is equal to
A. $\iint_{\mathcal{D}} y+1 \mathrm{~d} S+\oint_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$
B. $\iint_{\mathcal{D}} y-1 \mathrm{~d} S-\oint_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$
C. $-\iint_{\mathcal{D}} y+1 \mathrm{~d} S+\oint_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$
D. $-\iint_{\mathcal{D}} y+1 \mathrm{~d} S-\oint_{\mathcal{C}_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$
3. Consider the two vector fields

$$
\mathbf{F}(x, y, z)=\left\langle x, \frac{-z}{y^{2}+z^{2}}, \frac{y}{y^{2}+z^{2}}\right\rangle \quad \text { and } \quad \mathbf{H}(x, y, z)=\left\langle x, \frac{y}{y^{2}+z^{2}}, \frac{z}{y^{2}+z^{2}}\right\rangle .
$$

(a) (2 points) Which of these vector fields is conservative on the domain $\mathbb{R}^{3}-\{(x, 0,0) \mid x \in \mathbb{R}\}$? Hint: think about the next two parts first.
(b) (4 points) For the conservative vector field, find a potential function.
(c) (4 points) Show that the other vector field is not conservative.
(d) (2 points) Calculate line integral of the non conservative vector field along the oriented curve \mathcal{C} given by the parametrisation

$$
\mathbf{r}(t)=(\cos t, 2 \sin t, \cos t), \text { where } t \in[0,2 \pi]
$$

4. (a) (3 points) Let \mathcal{S} be an oriented surface and let \mathbf{F} be a vector field which has continuous partial derivatives on an open region containing \mathcal{S}. State Stokes' theorem for \mathbf{F}.
(b) (3 points) Let \mathcal{S} be a closed surface that encloses a solid region \mathcal{E} in R^{3}. Assume that \mathcal{S} is piecewise smooth and is oriented with normal vectors pointing to the outside of \mathcal{E}. Let \mathbf{F} be a vector field whose domain contains \mathcal{E}. State the divergence theorem for \mathbf{F}.
(c) (3 points) Consider the vector field $\mathbf{F}=\rho^{-3}\left\langle x, y,\left(1+\rho^{3}\right) z\right\rangle$ where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$. What does the divergence theorem predict the outward flux of \mathbf{F} through the unit sphere $x^{2}+y^{2}+z^{2}=1$ to be?
(d) (3 points) What is the outward flux of \mathbf{F} through the unit sphere $x^{2}+y^{2}+z^{2}=1$?
(e) (1 point) Why do these two values not agree?
5. \mathcal{S} be the hyperboloid $x^{2}+y^{2}-z^{2}=1$ where $0 \leq z \leq a$ with orientation given by normal pointing away from the origin.
(a) (3 points) Find the volume enclosed by \mathcal{S} and the planes $z=a$ and $z=0$.
(b) (2 points) Find a parametrisation $G(\theta, z)$ for \mathcal{S} such that $(\theta, z) \in[0,2 \pi] \times[0, a]$.
(c) (5 points) Calculate the flux of the vector field $\mathbf{F}=\langle 1,1,-2\rangle$ through \mathcal{S}.
6. Consider an oriented curve, \mathcal{C} in \mathbb{R}^{2}, which consists of straight lines between the points $(0,0),(2,-1),(3,2),(1,3)$ and back to $(0,0)$
in that order. Notice that this path forms a parallelogram.
(a) (3 points) Find a change of variables $G(u, v)$ which maps the unit square $[0,1] \times[0,1]$ to this parallelogram. Calculate the Jacobian of $G(u, v)$.
(b) (4 points) Let $\mathbf{F}=\left\langle-x y, y^{2}\right\rangle$. Use Green's theorem to calculate $\oint_{\mathcal{C}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}$. To receive full credit you must use Green's theorem.
(c) (4 points) Use Green's theorem to calculate the flux of \mathbf{F} through \mathcal{C}. To receive full credit you must use Green's theorem.
7. Consider the vector field $\mathbf{F}=\operatorname{curl}(\mathbf{A})$ where $\mathbf{A}=\left\langle z(x+y)-y^{2}, x(z-y), x^{2}+y^{2}\right\rangle$.
(a) (3 points) Calculate \mathbf{F}.
(b) (7 points) Suppose \mathcal{S} is an oriented, closed surface and consider its intersection with the plane $a x+b y+c z=1$. The plane splits the surface into two halves \mathcal{S}_{+}and \mathcal{S}_{-}(e.g. the unit sphere is split into two pieces by the plane $z=\frac{1}{2}$). These are both surfaces with boundary. Find conditions on a, b, and c such that the flux of \mathbf{F} through both \mathcal{S}_{+}and \mathcal{S}_{-}is zero for any choice of surface \mathcal{S}. Full credit will only be given if your answer states clearly each fact/theorem you are using and determines an infinite number of possibles values for a, b, and c.

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.

