
Math 32B - Fall 2019

Practice Final Exam

Full Name:

UID:

Circle the name of your TA and the day of your discussion:

Steven Gagniere Jason Snyder Ryan Wilkinson

Tuesday Thursday

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where
appropriate.

• Justify your answers. A correct final answer without valid reasoning
will not receive credit.

• Simplify your answers as much as possible.

• Include units with your answer where applicable.

• Calculators are not allowed but you may have a 3× 5 inch notecard.

Page Points Score Page Points Score

1 10 6 15

2 10 7 15

3 10 8 15

4 10

5 15 Total: 100

Bonus
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1. (5 points) Let R be the trapezoid with vertices (1, 0), (2, 0), (0, 2), and (0, 1). Evaluate

the iterated integral

∫∫
R

cos

(
y − x
y + x

)
dA.

2. (5 points) Find the volume of the solid that lies above the xy-plane, within the sphere
x2 + y2 + z2 = 4 and below the cone z = 2

√
x2 + y2.
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3. (10 points) Find the surface area of the portion S of z =
√
x2 + y2 contained within

the cylinder x2 + z2 ≤ 1.
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4. (5 points) Evaluate the line integral

∫
C
y sin z ds where C is parameterized by x = cos t,

y = sin t, z = t for 0 ≤ t ≤ 2π.

5. (5 points) Let F(x, y, z) = 〈2xy2 cos z, 2x2y cos z + 2y,−x2y2 sin z + 1〉. Find the work
done by the vector field F in moving a particle along the curve C parameterized by
r(t) = 〈t, sin t, t2 + 1〉 for 0 ≤ t ≤ π
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6. (5 points) Find the average value of f(x, y, z) = xy2z3 on the box [0, 1]× [0, 2]× [0, 3].

7. (5 points) The Laplace operator ∆ of a function f(x, y, z) is defined by

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

A function f satisfying ∆f = 0 is called harmonic.

(a) Show that F(x, y, z) =
〈
xz,−yz, 1

2
(x2 − y2)

〉
is the gradient of a harmonic function.

(b) Find the flux of F through the surface S given by x2 + y2 + z2 = 1 with outward
normal.
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8. (15 points) Let F(x, y, z) = 〈xy2 + ey+cos y, x2y+ sin z, z2 + cosx〉 and let E be the solid

cone consisting of the points above z =
√
x2 + y2 and below z = 4. Find

∫∫
S

F · n dS
where S is the surface of E with positive orientation.
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9. (15 points) Let F(x, y, z) = 〈x, x+y3, x2+y2−z〉 and let S be the surface z = x2−y2 for

x2 +y2 ≤ 1 with upward orientation and positively oriented boundary C. Find

∫
C

F ·dr.
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10. (15 points) Find

∫ 2

0

∫ 2−x2

x−x2

6x cos
(
(x2 + y)3

)
dy dx using the substitutions u = x2 + y

and v = x.
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11. (15 points) Let F(x, y) = 〈xy + cos(x2), x − arctan(y2)〉 and let D be the region of the
plane above the x-axis inside the circle centered at the origin with radius 2 and outside
the circle centered at (1, 0) with radius 1. Let C be the boundary of D with positive

orientation. Evaluate

∫
C

F · dr.
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