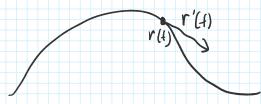
Derivative of rector ralled functions

given $v(f) = \langle x(f), y(f), z(f) \rangle$, then $r'(f) = \langle z'(f), y'(f), z'(f) \rangle$. Seometrically we think of r'(f) as the Jungent vector to the curve r(f) at the f.



The derivative behaves similarly to the one-dimensional cold. Grum scalar Runchin f: IR > R we have:

product rule:
$$(f(t)r(t))' = f'(t)r(t) + f(t)r'(t)$$

chain rule: $(r(f(t))' = r'(f(t))r'(t)$

The dot and cross product also obey the product rule: $(r_1(1) \cdot r_2(1))' = r_1'(1) \cdot r_2(1) + r_1(1) \cdot r_2'(1)$ $(r_1(1) \times r_2(1))' = r_1'(1) \times r_2(1) + r_1(1) \times r_2'(1).$

Grup Question:

- 1) given $r_1(f) = \langle +^2, 1, 2+ \rangle$ and $r_2(f) = \langle 1, 2, e^+ \rangle$ calculate $(r_1(f), r_2(f))$ in two ways:

 a) take dul product first and then differentiate

 b) differentiate using product vale
- 2) If ||r(t)|| is constant, show that r(t) and r'(t) are orthogonal. that: $||r(t)||^2 = r(t) \cdot r(t)$
- 3) Show that $(a \times r(1))' = a \times r'(1)$ for any constant weiter a.

Answers:

1) a)
$$r_1(1) \cdot r_2(1) = t^2 + 2 + 2 + e^t$$

so $(r_1(1) \cdot r_2(1))' = 2t + 2 + e^t + 2 + e^t$
b) $(r_1(1) \cdot r_2(1))' = r_1'(1) \cdot r_2(1) + r_1(1) \cdot r_2'(1)$
 $= (2t, 0, 2) \cdot (1, 2, e^t) + (t^2, 1, 2t) \cdot (0, 0, e^t)$
 $= 2t + 2e^t + 2 + e^t$

2) K= ||r(1)|| smu eonstant.

Hence,
$$K = r(t) \cdot r(t)$$
 and differentiating:

$$0 = r'(t) \cdot r(t) + r(t) \cdot r'(t)$$

$$\Rightarrow$$
 $v'(f)\cdot r(f)=0$
 \Rightarrow $r'(f)$ and $r(f)$ or though a or f .

3) note, we can think of \underline{a} as a constant vector function $g(f) = \underline{q}$. i.e. g'(f) = 0. Hence by product value,

$$(a \times r(f))' = (g(f) \times r(f))'$$

= $g'(f) \times r(f) + g(f) \times r'(f)$
= $a \times r'(f)$ since $g'(f) = 0$.

Midterm 2 (Practice Test) Calculus of Several Variables (Math 32A)

Name: _____ U ID: ____

Question:	1	2	3	4	5	Total
Points:	5	5	5	5	5	25
Score:						

1. 5 points Find the equation of the plane which contains the point (-1,0,2) and is parallel to the plane 2x - y - z = 3.

parrallel to plane means same normal nector. ie $\vec{n} = (2, -1, -1)$.

Hence the plane 11 of the form 2x-y-z=d for some d. Since contains (-1,0,2) we get 2(-1)-0-2=d d=-4.

Therefore, the plane is: 2x-y-z=-4.

2. $\boxed{5 \text{ points}}$ Let $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ be two unit vectors such that $||\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}|| = \frac{3}{2}$. Then compute $||\overrightarrow{\mathbf{u}} - \overrightarrow{\mathbf{v}}||$.

Ux that a)
$$||\vec{x}+\vec{y}||^{2} = ||\vec{y}||^{2} + 2\vec{x} \cdot \vec{y} + ||\vec{y}||^{2}$$

$$||\vec{x}-\vec{y}||^{2} = ||\vec{y}||^{2} - 2\vec{x} \cdot \vec{y} + ||\vec{y}||^{2}$$
Hence, $||\vec{x}+\vec{y}||^{2} + ||\vec{x}-\vec{y}||^{2} = 2||\vec{x}||^{2} + 2||\vec{y}||^{2}$.

Now, we are given $||\vec{x}+\vec{y}||^{2} = \frac{q}{q}$ and $||\vec{x}||^{2} = ||\vec{y}||^{2} = 1$.

Therefore, $||\vec{x}-\vec{y}||^{2} = 4$

$$||\vec{x}-\vec{y}||^{2} = \frac{7}{4}$$

$$||\vec{x}-\vec{y}||^{2} = \frac{7}{4}$$

$$||\vec{x}-\vec{y}||^{2} = \frac{7}{4}$$

3. 5 points Consider the following parametric equation:

$$x = a\cos\theta + a\sin\theta$$
, $y = -b\sin\theta + b\cos\theta$, where θ is a parameter.

Find a relation between x and y by eliminate the parameter θ .

we have that

$$\left(\frac{\times}{9}\right)^2 = \cos^2\theta + 2\cos\theta\sin\theta + \sin^2\theta = 1 + 2\cos\theta\sin\theta$$

$$\left(\frac{y}{y}\right)^2 = \sin^2\theta - 2\cos\theta\sin\theta + \cos^2\theta = 1 - 2\cos\theta\sin\theta$$

Hence
$$\frac{x^2}{a^3} + \frac{y^2}{b^2} = 2$$

4. 5 points Find the solution of the differential equation with respect to the given initial

$$\overrightarrow{\mathbf{r}}''(t) = \langle e^t, \sin t, \cos t \rangle, \quad \overrightarrow{\mathbf{r}}(0) = \langle 1, 0, 1 \rangle \text{ and } \overrightarrow{\mathbf{r}}'(0) = \langle 0, 2, 2 \rangle.$$

$$r'(t) = \int r''(t)dt = \langle et, -(ost, sint) + \tilde{c}$$

when
$$t=0$$
, $r'(0)=\langle 0,2,2\rangle=\langle 1,-1,0\rangle+\zeta$

$$c = \langle -1, 3, 2 \rangle$$
.
So $r'(t) = \langle e^t - 1, 3 - \cos t, 2 + \sin t \rangle$

$$r(t) = \int v'(t)dt = \langle e^t - t, 3t - sint, 2t - (sst) + \tilde{c}$$

 $r(0) = \langle 1, 0, D = \langle 1, 0, -1 \rangle + \tilde{c}$

$$\gamma(0) = (1,0,1) = (1,0,-1)$$

5. 5 points If $\overrightarrow{\mathbf{r}}(t)$ is a vector of constant length for all t, then prove that $\overrightarrow{\mathbf{r}}(t)$ is orthogonal to $\overrightarrow{\mathbf{r}}'(t)$.

As above

Page 6