Midterm 2 Practice

TA: Ben Szczesny

Most of these problems come from Sang Truong's Midterm 2 problem set. I'll be posting answers to these at http://www.math.ucla.edu/~ ben.szczesny/MATH32A-S19/coursehome.html

Question 1. The involute of a circle has parameterisation given by

$$
\vec{r}(\theta)=\langle R(\cos (\theta)+\theta \sin (\theta), R(\sin (\theta)-\theta \cos (\theta)))\rangle
$$

Find the arclength parameterisation.
Question 2. Show that the curvature at an inflection point of a plane curve $y=f(x)$ is zero.

Question 3. Given a frenet frame $(\vec{T}, \vec{N}, \vec{B})$ with arclength paramareterisation.
(a) Show $\frac{d \vec{B}}{d s}=\vec{T} \times \frac{d \vec{N}}{d s}$ and conclude that $\frac{d \vec{B}}{d s}$ is orthogonal to \vec{T}.
(b) Show that $\frac{d \vec{B}}{d s}$ is orthogonal to \vec{B}. Hint: Differentiate $\vec{B} \cdot \vec{B}=1$.
(c) Show that $\frac{d \vec{B}}{d s}$ is a multiple of \vec{N}.

Question 4. A particle has orbit given by

$$
\vec{r}(t)=\left\langle\ln (t), t, t^{2} / 2\right\rangle \text { for } t \geq 0
$$

Find the equation for the osculating plane to this particle at $t=1$
Question 5. Show that for a vector function $\vec{r}(t)$, both $\vec{r}^{\prime}(t)$ and $\vec{r}^{\prime \prime}$ lie in the osculating plane. Hint: differentiate $\vec{r}^{\prime}(t)=v(t) \vec{T}(t)$.

Question 6. Find the domain for the following functions
(a) $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}-1}$
(b) $f(x, y)=\frac{y \sin (x)}{1+y}$
(c) $f(x, y)=-\frac{1}{\sin (x y)}$

