Midterm 2 Practice

TA: Ben Szczesny

Most of these problems come from Sang Truong's Midterm 2 problem set. I'll be posting answers to these at http://www.math.ucla.edu/~ben.szczesny/MATH32A-S19/coursehome.html

Question 1. The involute of a circle has parameterisation given by

$$\vec{r}(\theta) = \langle R(\cos(\theta) + \theta\sin(\theta), R(\sin(\theta) - \theta\cos(\theta))) \rangle$$

Find the arclength parameterisation.

Question 2. Show that the curvature at an inflection point of a plane curve y = f(x) is zero.

Question 3. Given a frenet frame $(\vec{T}, \vec{N}, \vec{B})$ with arclength paramareterisation.

- (a) Show $\frac{d\vec{B}}{ds} = \vec{T} \times \frac{d\vec{N}}{ds}$ and conclude that $\frac{d\vec{B}}{ds}$ is orthogonal to \vec{T} .
- (b) Show that $\frac{d\vec{B}}{ds}$ is orthogonal to \vec{B} . Hint: Differentiate $\vec{B} \cdot \vec{B} = 1$.
- (c) Show that $\frac{d\vec{B}}{ds}$ is a multiple of \vec{N} .

Question 4. A particle has orbit given by

$$\vec{r}(t) = \langle \ln(t), t, t^2/2 \rangle$$
 for $t \ge 0$.

Find the equation for the osculating plane to this particle at t = 1

Question 5. Show that for a vector function $\vec{r}(t)$, both $\vec{r}'(t)$ and \vec{r}'' lie in the osculating plane. Hint: differentiate $\vec{r}'(t) = v(t)\vec{T}(t)$.

Question 6. Find the domain for the following functions

(a)
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2} - 1}$$

(b) $f(x,y) = \frac{y\sin(x)}{1+y}$
(c) $f(x,y) = -\frac{1}{\sin(xy)}$