Problem 1 A bee with velocity vector $\mathbf{r}^{\prime}(t)$ starts out at the origin at $t=0$ and flies around for T seconds. Where is the bee located at T seconds if $\int_{0}^{T} \mathbf{r}^{\prime}(u) d u=0$?. What does the quantity $\int_{0}^{T}\left\|\mathbf{r}^{\prime}(u)\right\| d u$ represent?

Problem 2 In this question we will find the arclength parameterization of $\mathbf{r}(t)=\left\langle e^{t} \sin (t), e^{t} \cos (t), e^{t}\right\rangle$.
(a) Find $\left\|\mathbf{r}^{\prime}(t)\right\|$.
(b) Find arclength s as a function of time t by using

$$
s(t)=\int_{0}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u
$$

(c) Find time t as a function of arclength s by inverting the previous function.
(d) What is an arclength parameterization of $\mathbf{r}(t)$?

Problem 3 Determine whether the following are true or false.
(a) A circle of radius 3 has more curvature than a circle of radius 4.
(b) Reparameterizing a curve can change it's curvature at a point.
(c) A curve with constant curvature is a circle.

Problem 4 For this question, consider the ellipse given by the equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

(a) Sketch this curve. When do you think the curvature maximal? When is it minimal?
(b) Consider the plane as the $x y$-plane in 3 -space. The ellipse then has parameterisation given by

$$
\mathbf{r}(t)=\langle 3 \cos (t), 2 \sin (t), 0\rangle
$$

Use the formula

$$
\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

to calculate the curvature.
(c) Does your answer in the previous part agree with your guess form the first?

