Problem 1 Find the parametric equation to the tangent line to the helix $\mathbf{r}(t) = \langle 2\cos(t), \sin(t), t \rangle$ at $(0, 1, \pi/2)$.

Problem 2 Consider a particle with a path parameterization given by $\mathbf{r}(t) = \langle t^3, t^6 \rangle$.

- (a) Sketch the curve of this particle's trajectory.
- (b) Show that the velocity of the particle at t = 0 is zero.
- (c) One might think as the velocity vector is zero at t=0, it isn't possible for there to be a tangent line at t=0. Why does this not make sense considering your sketch in Problem (2.a)? Based on your sketch, what do you think the tangent line should be?
- (d) This apparent contradiction can be fixed by reparameterising the curve. Do so such that the new path parameterisation has non-zero vector when the particle is at the origin. Then show that the tangent line is as expected in the previous part.

Problem 3 Describe physically what happens to a point particle if it's path parameterization $\mathbf{r}(t)$ is such that:

- (a) $||\mathbf{r}(t)||' = 0$
- (b) $||\mathbf{r}'(t)|| = 0$

Problem 4 Suppose we have a point P with trajectory given by $\mathbf{r}(t)$ in \mathbb{R}^3 such that it starts at the origin (that is $\mathbf{r}(0) = \mathbf{0}$). If $\mathbf{r}'(t) \cdot \langle 1, 0, 0 \rangle > 0$, is it possible for the point P to collide with the point $\langle -2, 0, 3 \rangle$?

Problem 5 Suppose we have a curve that has two different parameterisations given by $\mathbf{r}_1(t)$ and $\mathbf{r}_2(s)$ such that $\mathbf{r}_1(0) = \mathbf{r}_2(0)$. What is $\mathbf{r}_1'(0) \times \mathbf{r}_2'(0)$?