Problem 1 (a) Describe geometrically when $\mathbf{u} \cdot \mathbf{v}$ is negative, positive and zero.
(b) Simplify $(\mathbf{v}+2 \mathbf{w}) \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{v}$
(c) What is wrong with the expression $\mathbf{u} \cdot \mathbf{v}+\mathbf{v}$?

Problem 2 If \mathbf{e} and \mathbf{f} are unit vectors such that $\|\mathbf{e}+\mathbf{f}\|=\frac{3}{2}$, find $\|\mathbf{e}-\mathbf{f}\|$. Hint: Use that $\|\boldsymbol{e}+\boldsymbol{f}\|^{2}=(\boldsymbol{e}+\boldsymbol{f}) \cdot(\boldsymbol{e}+\boldsymbol{f})$ to first find $\boldsymbol{e} \cdot \boldsymbol{f}$.

Problem 3 (a) Why does $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ make sense, while $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ doesn't?
(b) Why does $\mathbf{u} \times \mathbf{v}+\mathbf{v} \times \mathbf{u}=0$?
(c) Is it always true that $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$?

Problem 4 Find the two unit vectors orthogonal to $\mathbf{a}=\langle 3,1,1\rangle$ and $\mathbf{b}=\langle-1,2,1\rangle$.

Problem 5 How can you use the cross and dot product to determine if three vectors lie on the same plane?

Problem $6{ }^{1}$ Suppose that one side of a triangle forms the diameter of a circle and the vertex opposite this side lies on a circle. Use the dot product to prove that this is a right triangle.

[^0]
[^0]: ${ }^{1}$ From https://math.berkeley.edu/ hutching/teach/53-2015/53worksheets.pdf

