Problem 1 (a) Describe geometrically when $\mathbf{u} \cdot \mathbf{v}$ is negative, positive and zero.

- (b) Simplify $(\mathbf{v} + 2\mathbf{w}) \cdot \mathbf{u} \mathbf{u} \cdot \mathbf{v}$
- (c) What is wrong with the expression $\mathbf{u} \cdot \mathbf{v} + \mathbf{v}$?
- **Problem 2** If **e** and **f** are unit vectors such that $||\mathbf{e} + \mathbf{f}|| = \frac{3}{2}$, find $||\mathbf{e} \mathbf{f}||$. *Hint: Use that* $||\mathbf{e} + \mathbf{f}||^2 = (\mathbf{e} + \mathbf{f}) \cdot (\mathbf{e} + \mathbf{f})$ to first find $\mathbf{e} \cdot \mathbf{f}$.
- **Problem 3** (a) Why does $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ make sense, while $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ doesn't?
 - (b) Why does $\mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{u} = 0$?
 - (c) Is it always true that $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$?

Problem 4 Find the two unit vectors orthogonal to $\mathbf{a} = \langle 3, 1, 1 \rangle$ and $\mathbf{b} = \langle -1, 2, 1 \rangle$.

- Problem 5 How can you use the cross and dot product to determine if three vectors lie on the same plane?
- Problem 6 ¹Suppose that one side of a triangle forms the diameter of a circle and the vertex opposite this side lies on a circle. Use the dot product to prove that this is a right triangle.

¹From https://math.berkeley.edu/ hutching/teach/53-2015/53worksheets.pdf