Problem 1 For these questions, consider vectors **a** and **b** in the plane \mathbb{R}^2 .

- (a) Use the parallelogram law to explain geometrically why $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$. That is, the order in which you add vectors doesn't matter.
- (b) Is it true that $\mathbf{a} \mathbf{b} = \mathbf{b} \mathbf{a}$? Why, why not?
- (c) Suppose that $||\mathbf{a}|| = 5$. What is the length of $-5\mathbf{a}$?
- (d) Suppose that $\mathbf{a} = \langle 2, 1 \rangle$ and $\mathbf{b} = \langle -1, 3 \rangle$ and both are based at the origin. Compute the vector that connects the head of \mathbf{a} to the head of \mathbf{b} .

Problem 2 For these questions, consider vectors \mathbf{u} and \mathbf{v} in the plane \mathbb{R}^3 .

- (a) When is it true that $||\mathbf{u}|| + ||\mathbf{v}|| = ||\mathbf{u} + \mathbf{v}||$?
- (b) What about $||\mathbf{u}||^2 + ||\mathbf{v}||^2 = ||\mathbf{u} + \mathbf{v}||^2$?
- (c) Suppose we have that $||\mathbf{u}|| + ||\mathbf{v}|| = ||\mathbf{u} + \mathbf{v}||$, $||\mathbf{u} + \mathbf{v}|| = 15$ and $\mathbf{u} = \langle 4, 3, 0 \rangle$. What is \mathbf{v} ?

Problem 3 ¹ Here we find the parametric equations for a line in \mathbb{R}^3 passing through the points $\mathbf{a} = \langle 1, 0, 1 \rangle$ and $\mathbf{b} = \langle 2, 1, -1 \rangle$.

- (a) Find a vector **u** in the same direction as the line.
- (b) Let \mathbf{c} be any point on the line. Explain why $\mathbf{c} + t\mathbf{u}$ gives a parametric equation for the line. Write down this equation.
- (c) Can you get more than one parametric equation for the same line through these methods?

Problem 4 (Additional, harder problem) Consider two vectors $\mathbf{u} = \langle a, b \rangle$ and $\mathbf{v} = \langle c, d \rangle$. We will consider the number D = ac + bd. Hint: Consider Question 2

- (a) Show that D = 0 if and only if **u** and **v** are orthogonal.
- (b) Show that $D = ||\mathbf{u}|| ||\mathbf{v}||$ if \mathbf{u} and \mathbf{v} point in the same direction.
- (c) Use the law of cosines to find a formula for D in terms of the lengths of \mathbf{u}, \mathbf{v} and the angle θ between them.

¹From https://math.berkeley.edu/ hutching/teach/53-2015/53worksheets.pdf