Problem 1 For these questions, consider vectors a and \mathbf{b} in the plane \mathbb{R}^{2}.
(a) Use the parallelogram law to explain geometrically why $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$. That is, the order in which you add vectors doesn't matter.
(b) Is it true that $\mathbf{a}-\mathbf{b}=\mathbf{b}-\mathbf{a}$? Why, why not?
(c) Suppose that $\|\mathbf{a}\|=5$. What is the length of $-5 \mathbf{a}$?
(d) Suppose that $\mathbf{a}=\langle 2,1\rangle$ and $\mathbf{b}=\langle-1,3\rangle$ anf both are based at the origin. Compute the vector that connects the head of \mathbf{a} to the head of \mathbf{b}.

Problem 2 For these questions, consider vectors \mathbf{u} and \mathbf{v} in the plane \mathbb{R}^{3}.
(a) When is it true that $\|\mathbf{u}\|+\|\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$?
(b) What about $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$?
(c) Suppose we have that $\|\mathbf{u}\|+\|\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|,\|\mathbf{u}+\mathbf{v}\|=15$ and $\mathbf{u}=\langle 4,3,0\rangle$. What is \mathbf{v} ?

Problem $3{ }^{1}$ Here we find the parametric equations for a line in \mathbb{R}^{3} passing through the points $\mathbf{a}=\langle 1,0,1\rangle$ and $\mathbf{b}=\langle 2,1,-1\rangle$.
(a) Find a vector \mathbf{u} in the same direction as the line.
(b) Let \mathbf{c} be any point on the line. Explain why $\mathbf{c}+t \mathbf{u}$ gives a parametric equation for the line. Write down this equation.
(c) Can you get more than one parametric equation for the same line through these methods?

Problem 4 (Additional, harder problem) Consider two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$. We will consider the number $D=a c+b d$. Hint: Consider Question 2
(a) Show that $D=0$ if and only if \mathbf{u} and \mathbf{v} are orthogonal.
(b) Show that $D=\|\mathbf{u}\|\|\mathbf{v}\|$ if \mathbf{u} and \mathbf{v} point in the same direction.
(c) Use the law of cosines to find a formula for D in terms of the lengths of \mathbf{u}, \mathbf{v} and the angle θ between them.

[^0]
[^0]: ${ }^{1}$ From https://math.berkeley.edu/ hutching/teach/53-2015/53worksheets.pdf

