Math 31B: Week 9 Section

TA: Ben Szczesny

Discussion Questions

Question 1. We want to figure out whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ converges or diverges.
(a) What is wrong with the following argument?

Since $(\ln (n))^{2} \geq 1$, we have that $\frac{1}{n(\ln (n))^{2}} \leq \frac{1}{n}$. Hence by the direct comparison test, the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ diverges.
(b) What is the integral test?
(c) Use the integral test to determines whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ diverges or converges.

Solution to Question 1.
(a) The inequality is the wrong way for the direct comparison test.
(b) This can be found in the textbook.
(c) We have $f(x)=\frac{1}{x(\ln (x))^{2}}$ is positive and decreasing and the sequence is given by $f(n)$. Hence the integral test applies and we find

$$
\int_{2}^{\infty} f(x) d x=\int_{\ln (2)}^{\infty} \frac{d u}{u^{2}}=\frac{1}{\ln (2)}<\infty
$$

Hence the series converges.

Question 2. We investigate the convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where

$$
a_{n}= \begin{cases}\frac{2}{n+1} & \text { when } n \text { odd } \\ \frac{1}{2^{n / 2}} & \text { when } n \text { even } .\end{cases}
$$

i.e,

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\cdots
$$

(a) Prove that this series is not absolutely convergent.
(b) What is wrong with the following argument?

Since this is an alternating series, by the alternating series test the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(c) Does this series converge or diverge? Hint: Try and sum the negative terms of the series, what are you left with?

Solution to Question 2.
(a) We have that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| \geq \sum_{n=1}^{\infty} a_{2 n}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Hence the series is not absolutely convergent.
(b) The sequence $\left(a_{n}\right)$ is both positive and has limit zero as $n \rightarrow \infty$. However, it is not decreasing so the alternating series test does not apply.
(c) The negative terms form a geometric series with total sum -1 while the positive terms form a harmonic series and so diverges. Hence the series will diverge.

Question 3. Show that $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges. You may use that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Solution to Question 3.
We have $a_{n}=\frac{n!}{n^{n}}$ and we try the ratio test

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} \\
& =\left(\frac{n}{n+1}\right)^{n} \\
& \rightarrow \frac{1}{e} \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence by the ratio test, the series converges.

Extra Questions

Question 4. determine convergence or divergence of the following.
(a) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{3}}{5^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)$

Solution to Question 4.
(a) We have that $\left|\frac{\sin (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}$. Since $\sum \frac{1}{n^{2}}$ converges, by the direct comparison test we see this series converges absolutely and hence converges.
(b) We apply the ratio test

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{3}}{5^{n+1}} \cdot \frac{5^{n}}{n^{3}}=\frac{1}{5}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{5}<1
$$

Hence converges by ratio test.
(c) The sequence of terms is positive and decreasing, hence the integral test applies. We can use the substitution $u=\sqrt{x}$ to integrate it.

$$
\int_{1}^{\infty} \frac{1}{x+\sqrt{x}}=\int_{1}^{\infty} \frac{2 d u}{u+1}=\infty
$$

Hence the series diverges by integral test.
(d) For $x>0$ we have that $\sin (x) \leq x$. Hence $\sin \left(\frac{1}{n^{2}}\right) \leq \frac{1}{n^{2}}$ and so by the direct comparison test the series converges.

