Math 31B: Week 9 Section

TA: Ben Szczesny

Discussion Questions

Question 1. We want to figure out whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ converges or diverges.
(a) What is wrong with the following argument?

Since $(\ln (n))^{2} \geq 1$, we have that $\frac{1}{n(\ln (n))^{2}} \leq \frac{1}{n}$. Hence by the direct comparison test, the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ diverges.
(b) What is the integral test?
(c) Use the integral test to determines whether $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ diverges or converges.

Question 2. We investigate the convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where

$$
a_{n}= \begin{cases}\frac{2}{n+1} & \text { when } n \text { odd } \\ \frac{1}{2^{n / 2}} & \text { when } n \text { even } .\end{cases}
$$

i.e,

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\cdots
$$

(a) Prove that this series is not absolutely convergent.
(b) What is wrong with the following argument?

Since this is an alternating series, by the alternating series test the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(c) Does this series converge or diverge? Hint: Try and sum the negative terms of the series, what are you left with?

Question 3. Show that $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converges. You may use that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Extra Questions

Question 4. determine convergence or divergence of the following.
(a) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{3}}{5^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n^{2}}\right)$

