Math 31B: Week 6 Section

TA: Ben Szczesny

Information

Discussion Questions

Question 1.

(a) Find the Taylor polynomial T_{3} of $\cos (x)$ centered at $x=\pi / 2$.
(b) Prove that the n-th Maclaurin polynomial of $\cos (x)$ is given by

$$
T_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

(c) Use the error bound

$$
\left|T_{n}(x)-\cos (x)\right| \leq \frac{K|x-a|^{n+1}}{(n+1)!}
$$

to find an n such that

$$
\left|T_{n}(0.1)-\cos (0.1)\right| \leq 10^{-7}
$$

Question 2.

(a) Show that $\int_{1}^{\infty} \frac{d x}{x^{3}+1}$ converges by comparing it with $\int_{1}^{\infty} \frac{d x}{x^{3}}$.
(b) Show that $\int_{e}^{\infty} \frac{d x}{x \ln (x)}$ diverges.

Question 3. Gabriel's Horn. Let $f(x)=\frac{1}{x}$. We will show that some shapes can have infinite surface area but only finite volume.
(a) Show that the surface of revolution around the x-axis over the interval $[1, \infty)$ is given by

$$
2 \pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x
$$

(b) Use the comparison test to show that this integral diverges.
(c) Show that the volume of revolution over this same interval is finite.

Homework Questions

Section 9.4
$4,14,18,20,31,36,44,49,52$
Section 8.7
$1,4,5,6,14,16,26,32,38,46,50,54,60,62,66,76$

Extra Questions

* Question 4. Notice that as a consequence of the error bound ${ }^{1}$, we have that the remainder of a taylor expansion around a satisfies $\lim _{x \rightarrow a} \frac{R_{n}(x)}{(x-a)^{n}}=0$. This can be used to solve limits in a similar way to L'Hopitals rule.
(a) Use L'hopitals to find the limit $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}}$.
(b) We know from the first question that $\sin (x)=x-\frac{x^{3}}{3!}+R_{3}(x)$. Use this to find the limit $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}}$.
(c) Similarly, find the limit $\lim _{x \rightarrow 0} \frac{\ln (1-x)-x}{x^{2}}$ with Taylor polynomials.

[^0]
[^0]: ${ }^{1}$ Assuming $f^{(n+1)}(x)$ exists and is continuous.

