Math 31B: Week 5 Section

TA: Ben Szczesny

Information

Discussion Questions

Question 1.

(a) What is the point of numerical integration?
(b) Describe in your own words what the Midpoint $\left(M_{N}\right)$, Trapezoidal $\left(T_{N}\right)$ and Simpson's $\left(S_{N}\right)$ Rules are.
(c) What are the formulas for these rules? (Can you do so without looking at your notes?)

Question 2. Consider the definite integral $\int_{2}^{5} \frac{1}{x} d x$. In this question we will investigate how well the Trapezoidal Rule $\left(T_{N}\right)$ approximates this integral. The error bound is given by the formula

$$
\operatorname{error}\left(T_{N}\right) \leq \frac{K_{2}(b-a)^{3}}{12 N^{2}}
$$

(a) Do you expect the Trapezoidal Rule to over or underestimate the definite integral? If so, why?
(b) Let $f(x)=\frac{1}{x}$, the constant K_{2} is any number such that $\left|f^{\prime \prime}(x)\right| \leq K_{2}$ for all x in the interval we are integrating over. However we usually take it to be the the absolute value of the maximum of the second derivative, $\left|\max _{x \in[a, b]} f^{\prime \prime}(x)\right|$. Find the maximum of $f^{\prime \prime}$ and set K_{2} to be the absolute value of this value.
(c) In the formula $b-a$ is the length of the interval we are integrating over. In this case we have $b-1=$ $5-2=3$. Use this and the previous part to find a value of N for which $\operatorname{error}\left(T_{N}\right)<10^{-6}$.

Question 3. Compute the arc length of $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right)$ over the interval $[1,3]$.

Question 4. Compute the surface are of revolution about the x-axis for $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln (x)$ over the interval $[1, e]$.

Homework Questions

Section 8.9
$12,16,34,36,38,40$
Section 9.1
$2,9,14,18,21,23,28,40,42$

Extra Questions

Question 5. Evaluate the following integrals
(a) $\int \frac{d x}{x^{2}+2 x+5}$
(d) $\int \sqrt{1+\sqrt{x}} d x$
(b) $\int \sin ^{5}(x) \cos ^{2}(x) d x$
$(\mathrm{e})^{*} \int \frac{1}{\operatorname{sech}(x)} d x$.
$(\mathrm{c})^{*} \int \sin ^{4}(x) \cos ^{2}(x) d x$
$(\mathrm{f}) * * \int_{0}^{\pi / 2} \frac{\sin (x)}{\cos (x)+\sin (x)} d x$

Hint for (f): Remember the trig identities $\sin (\pi / 2-x)=\cos (x)$.
Question 6. Find the surface area of the torus obtained by rotating the circle $x^{2}+(y-b)^{2}=r^{2}$ about the x-axis.

