Math 31B: Week 3 Section

TA: Ben Szczesny

Information

Discussion Questions

Question 1. Use L'Hopital's rule to evaluate the following limits or state that it does not apply
(a) $\lim _{x \rightarrow 9} \frac{x^{1 / 2}-x+6}{x^{3 / 2}-27}$
(c) $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x^{2}+3 x+1}$
(b) $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\sin (5 x)}$
(d) $\lim _{x \rightarrow 1} \frac{e^{x}-e}{2 x-2}$

Solution to Question 1.
(a) We have $\lim _{x \rightarrow 9} \frac{x^{1 / 2}-x+6}{x^{3 / 2}-27}=\frac{0}{0}$ and so L-Hopital's applies. Differentiating we get that

$$
\lim _{x \rightarrow 9} \frac{\frac{1}{2} x^{-1 / 2}-1}{\frac{3}{2} x^{1 / 2}}=\frac{-5}{27}
$$

Hence $\lim _{x \rightarrow 9} \frac{x^{1 / 2}+x-6}{x^{3 / 2}-27}=\frac{-5}{27}$.
(b) We have $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\sin (5 x)}=\frac{0}{0}$ and so L-Hopital's applies. Differentiating we get that

$$
\lim _{x \rightarrow 0} \frac{-2 \sin (2 x)}{5 \cos (5 x)}=\frac{0}{5}
$$

Hence $\lim _{x \rightarrow 0} \frac{\cos (2 x)-1}{\sin (5 x)}=0$.
(c) We have $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x^{2}+3 x+1}=\frac{0}{1}$ and so L-Hopital's does not apply.
(d) We have $\lim _{x \rightarrow 1} \frac{e^{x}-e}{2 x-2}=\frac{0}{0}$ and so L-Hopital's applies. Differentiating we get that

$$
\lim _{x \rightarrow 1} \frac{e^{x}}{2}=\frac{e}{2}
$$

Hence $\lim _{x \rightarrow 1} \frac{e^{x}-e}{2 x-2}=\frac{e}{2}$.

Question 2. Compute without calculator:
(a) $\arcsin \left(\sin \frac{\pi}{3}\right)$
(c) $\arctan \left(\tan \frac{3 \pi}{4}\right)$
(b) $\arcsin \left(\sin \frac{4 \pi}{3}\right)$
(d) $\cos (\arctan (x))$

Solution to Question 2.

(a) Since the range of \arcsin is $[\pi / 2, \pi / 2]$, we have that $\arcsin \left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$.
(b) Since $\frac{4 \pi}{3}$ is not in the range of arcsin, we can not use the previous solution. We want to find a value $y \in[\pi / 2, \pi / 2]$ such that $\sin \left(\frac{4 \pi}{3}\right)=\sin (y)$, since this will then give us

$$
\arcsin \left(\sin \frac{4 \pi}{3}\right)=\arcsin (\sin y)=y
$$

In order to do this, we will use the identity $\sin (x)=\sin (\pi-x)$ (note, the general version of this identity is $\sin (x)=\sin \left((-1)^{n}(x-n \pi)\right), n \in \mathbb{Z}$ which can be used in the general case).
Now, we have that $\sin \left(\frac{4 \pi}{3}\right)=\sin \left(\pi-\frac{4 \pi}{3}\right)=\sin \left(-\frac{\pi}{3}\right)$ and as $-\frac{\pi}{3}$ is in the range of arcsin we have that

$$
\arcsin \left(\sin \frac{4 \pi}{3}\right)=\arcsin \left(\sin \frac{-\pi}{3}\right)=\frac{-\pi}{3} .
$$

(c) Similarly to the previous question. $\frac{3 \pi}{4}$ is not in the range of \arctan. However, we do have that $\tan (x)$ is π periodic $(\tan (x)=\tan (x+n \pi)$ for all $n \in Z)$ and so

$$
\arctan \left(\tan \frac{3 \pi}{4}\right)=\arctan \left(\tan \left(\frac{3 \pi}{4}-\pi\right)\right)=\arctan \left(\tan \frac{-\pi}{4}\right)=\frac{-\pi}{4}
$$

(d) We use a triangle method. We have the triangle

Hence, we have that $\cos (\arctan (x))=\frac{1}{\sqrt{x^{2}+1}}$.

Question 3. Show that $e=\lim _{x \rightarrow 0}(1+x)^{1 / x}$.

Solution to Question 3.

$\lim _{x \rightarrow 0}(1+x)^{1 / x}=1^{\infty}$ which is an indeterminate form. We consider the logarithm,

$$
\ln \left((1+x)^{1 / x}\right)=\frac{\ln (1+x)}{x} \rightarrow \frac{0}{0} \text { as } x \rightarrow 0
$$

Hence we try L'Hopitals and get that

$$
\frac{(\ln (1+x))^{\prime}}{(x)^{\prime}}=\frac{(1+x)^{-1}}{1} \rightarrow 1 \text { as } x \rightarrow 0
$$

Therefore, $\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=1$ and as exponential is continuous we have that

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=\lim _{x \rightarrow 0} \exp \left(\ln (1+x)^{1 / x}\right)=\exp \left(\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}\right)=\exp (1)=e
$$

Question 4. Find the derivatives of the following functions:
(a) $\arcsin \left(e^{x}\right)$
(c) $\sec ^{-1}(t+1)$
(b) $\arccos (\ln (x))$
(d) $\tan ^{-1}\left(\frac{1+t}{1-t}\right)$.

Solution to Question 4.

(a) $\frac{e^{x}}{\sqrt{1-e^{2 x}}}$
(c) $\frac{1}{|t+1| \sqrt{(t+1)^{2}-1}}$
(b) $\frac{-1}{x \sqrt{\left.1-\ln ^{2}(x)\right)}}$
(d) $\frac{1}{1+t^{2}}$.

Question 5. Evaluate the following integrals:
(a) $\int \frac{d t}{\sqrt{1-16 t^{2}}}$
(c) $\int \frac{\ln \left(\cos ^{-1}(x)\right) d x}{\left(\cos ^{-1}(x)\right) \sqrt{1-x^{2}}}$.
(b) $\int \frac{d x}{x \sqrt{x^{4}-1}}$

Solution to Question 5.
(a) $\frac{1}{4} \arcsin (4 t)+C$. Use substitution $u=4 t$.
(c) $-(\ln (\arccos (x)))^{2}+C$.
Use substitution $u=\arccos (x)$.
(b) $\frac{1}{2} \sec ^{-1}\left(x^{2}\right)+C$. Use substitution $u=x^{2}$.

Homework Questions

Section 7.7
$6,10,12,16,18,26,38,44,48,50,53,54,60,62$.
Section 7.8
$30,32,34,38,48,54,56,58,62,72,112$.

Extra Questions

Question 6. Show that 0^{∞} is not an indeterminate form by showing that for any positive functions f and g such that $\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{x \rightarrow 0} g(x)=\infty$, then

$$
\lim _{x \rightarrow 0} f(x)^{g(x)}=0
$$

In contrast, show that 1^{∞} is an indeterminate form by finding an example of positive functions f, g such that $\lim _{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 0} g(x)=\infty$ and $\lim _{x \rightarrow 0} f(x)^{g(x)}=1$. And then find another pair of functions f, g with corresponding limits as $x \rightarrow \infty$ but $\lim _{x \rightarrow 0} f(x)^{g(x)} \neq 1$.

Solution to Question 6.
Consider the logarithm $\ln \left(f(x)^{g(x)}\right)=g(x)(x)$ which always exists since f is positive. By the limit laws we have

$$
\lim _{x \rightarrow 0} g(x) \ln f(x)=\lim _{x \rightarrow 0} g(x) \cdot \lim _{x \rightarrow 0} \ln f(x)=\infty \times-\infty=-\infty
$$

Hence

$$
\lim _{x \rightarrow 0} f(x)^{g(x)}=\lim _{x \rightarrow 0} \exp \left(\ln f(x)^{g(x)}\right)=\exp \left(\lim _{x \rightarrow 0} f(x)^{g(x)}\right)=0 .
$$

Now consider the functions $f(x)=1$ and $g(x)=1 / x$, then $\lim _{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 0} g(x)=\infty$ and we have that

$$
\lim _{x \rightarrow 0} f(x)^{g(x)}=1
$$

If instead we take $f(x)=(1+x)$, then we still have that $\lim _{x \rightarrow 0} f(x)=1$. However, from Question 3 we have that

$$
\lim _{x \rightarrow 0} f(x)^{g(x)}=e
$$

Question 7. Evaluate the following integrals:
(a) $\int 2^{x} e^{4 x} d x$
(c) $\int \cos (x) 5^{-2 \sin (x)} d x$
(b) $\int \frac{e^{x} d x}{\sqrt{1-16 e^{2 x}}}$
(d) $\int \frac{d x}{x \sqrt{25 x^{2}-1}}$.

Solution to Question 7.
(a) $\frac{2^{x} e^{4 x}}{4+\ln 2}+C$. Note $2^{x} e^{4} x=e^{\ln (2) x+4 x}$.
(c) $\frac{-5^{-2 \sin (x)}}{2 \ln (5)}+C$. Use $u=\sin (x)$.
(b) $\frac{1}{4} \arcsin \left(4 e^{x}\right)+C$. Use $u=4 e^{x}$.
(d) $\sec ^{-1}(5 x)+C$. Use $u=5 x$.

