Math 31B: Week 2 Section

TA: Ben Szczesny

Information

My office hours are now: 2 pm on Tue and 4 pm on Thur.

Discussion Questions

Question 1. Solve the following equations:
(a) $7^{\log _{7}(21 x)}=3$
(c) $7 e^{5 t}=100$
(b) $\ln \left(x^{2}+4\right)=2 \ln (x)+\ln (2)$
(d) $\log _{3}(y)+3 \log \left(y^{2}\right)=14$

Solution to Question 1.
(a) $x=1 / 7$
(c) $t=\frac{1}{5} \ln \left(\frac{100}{7}\right)$
(b) $x= \pm 2$
(d) $y=9$

Question 2. find a domain on which f is one-to-one and a formula for the inverse of f restricted to this domain. Sketch the graphs of f and f^{-1}.
(a) $f(x)=\frac{1}{x+1}$
(b) $f(x)=\frac{1}{\sqrt{x^{2}+1}}$

Solution to Question 2.

(a) The function f has a natural domain given by $x \neq-1$. The derivative is given by $f^{\prime}(x)=-\frac{1}{(x+1)^{2}}$ and we see that $f^{\prime}<0$ when $x>-1$ and so f is decreasing in this region and therefore one-to-one for $x>-1$. Similarly, $f>0$ for $x<-1$ and so is one-to-one for $x<-1$. Moreover, given that $f>0$ for $x>-1$ and $f<0$ for $x<-1$ we therefore conclude that f is one-to-one on the entire domain $x \neq-1$ and hence has a well defined inverse. Swapping y and x and solving for the inverse yields:

$$
\begin{aligned}
x & =\frac{1}{1+y} \\
1+y & =\frac{1}{x} \\
y & =\frac{1}{x}-1
\end{aligned}
$$

The graphs are given by the following:

(b) The natural domain for f is the entire real line. However, f is not one-to-one and we must restrict it in order to get an inverse. Notice that f is symmetric around the y-axis (i.e, an even function) and so we must atleast restrict f to either the positive or negative real numbers. Note, we may still need to restrict it more in order to ensure it is one-to-one.

Differentiating f, we get that

$$
f^{\prime}(x)=-\frac{x}{\left(x^{2}+1\right)^{3 / 2}}
$$

and so we have that f is monotonically decreasing for $x>0$ and and monotonically increasing for $x<0$. Hence we can restrict f to the domain $x>0$, for which it is one-to-one and so has an inverse. Now, solving for the inverse we swap the x and y. Noting that since we have restricted to the domain $x>0$, the inverse has it range in the region $y>0$.

$$
\begin{aligned}
x & =\frac{1}{\sqrt{y^{2}+1}} \\
x^{2} & =\frac{1}{y^{2}+1} \\
y^{2} & =\frac{1}{x^{2}}-1 \\
\therefore y & =\sqrt{\frac{1}{x^{2}}-1} \text { since } y>0 \text { i.e, take positive root. }
\end{aligned}
$$

The graphs are given by the following:

Question 3. We have from lectures that if g is the inverse for a differentiable and one-to-one function f, then for x with $x \neq 0$,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

(a) Let $f(x)=x^{3}+1$ and g it's inverse. Find a formula for $g(x)$ and calculate g^{\prime} in two ways. The first by differentiating g, and the second way by applying the above theorem.
(b) Let $f(x)=x^{3}+2 x+4$ and g it's inverse. Without finding a formula for $g(x)$ (no seriously, don't even try) calculate $g(7)$ and then $g^{\prime}(7)$.

Solution to Question 3.
(a) Swapping the x and y, we then solve $x=y^{3}+1$ which gives us that the inverse is $y=(x-1)^{1 / 3}$. i.e, $g(x)=(x-1)^{1 / 3}$.
Differentiating, we get $g^{\prime}(x)=\frac{1}{3}(x-1)^{-2 / 3}$. Alternatively, $f(x)=3 x^{2}$ and so we get that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=\frac{1}{3(x-1)^{2 / 3}}
$$

(b) $g(7)=b$ where b is the number such that $f(b)=7$. i.e, $b^{3}+2 b+4=7$ and so $b=1$ by inspection. Now, by the above theorem we have that

$$
g^{\prime}(7)=\frac{1}{f^{\prime}(g(7))}=\frac{1}{f^{\prime}(1)}=\frac{1}{5}
$$

Question 4. Calculate the following derivatives
(a) $y=\ln \left(x^{2} 6^{x}\right)$
(c) $y=8^{\cos (x)}$
(b) $y=\ln \left(\frac{x+1}{x^{3}+1}\right)$
(d) $y=x^{e^{x}}$

Solution to Question 4.
(a)

$$
\begin{aligned}
y & =\ln \left(x^{2} 6^{x}\right) \\
y & =2 \ln (x)+x \ln (6) \\
\frac{d y}{d x} & =\frac{2}{x}+\ln (6) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\ln \left(\frac{x+1}{x^{3}+1}\right) \\
y & =\ln (x+1)-\ln \left(x^{3}+1\right) \\
\frac{d y}{d x} & =\frac{1}{x+1}-\frac{3 x^{2}}{x^{3}+1} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =8^{\cos (x)} \\
y & =e^{\ln (8) \cos (x)} \\
\frac{d y}{d x} & =-\ln (8) \sin (x) e^{\ln (8) \cos (x)} \\
& =-\ln (8) \sin (x) 8^{\cos (x)} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =x^{e^{x}} \\
y & =e^{\ln (x) e^{x}} \\
\frac{d y}{d x} & =\frac{d}{d x}\left(\ln (x) e^{x}\right) \cdot e^{\ln (x) e^{x}} \\
& =\left(\frac{e^{x}}{x}+\ln (x) e^{x}\right) \cdot x^{e^{x}} .
\end{aligned}
$$

Homework Questions

Section 7.2
$16,18,20,22,26,32,36$
Section 7.3
$30,34,38,46,48,76,80$

Extra Questions

Question 5. Differentiate the following:
(a) $y=\frac{x\left(x^{2}+1\right)}{\sqrt{x+1}}$
(c) $y=\pi^{5 x-2}$
(b) $y=x^{3^{x}}$
(d) $y=(2 x+1)\left(4 x^{2}\right) \sqrt{x-9}$

Solution to Question 5.
(a)

$$
\begin{aligned}
y & =\frac{x\left(x^{2}+1\right)}{\sqrt{x+1}} \\
\ln (y) & =\ln (x)+\ln \left(x^{2}+1\right)-\frac{1}{2} \ln (x+1) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{1}{x}+\frac{2 x}{x^{2}+1}-\frac{1}{2(x+1)} \\
\therefore \frac{d y}{d x} & =\frac{x^{2}+1}{\sqrt{x+1}}+\frac{2 x^{2}}{\sqrt{x+1}}-\frac{x\left(x^{2}+1\right)}{2(x+1)^{3 / 2}} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =x^{3^{x}} \\
y & =e^{\ln (x) 3^{x}} \\
\frac{d y}{d x} & =\frac{d}{d x}\left(\ln (x) 3^{x}\right) \cdot e^{\ln (x) 3^{x}} \\
& =\left(\frac{3^{x}}{x}+\ln (x) \ln (3) e^{x}\right) \cdot x^{3^{x}} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =\pi^{5 x-2} \\
y & =e^{\ln (\pi)(5 x-2)} \\
\frac{d y}{d x} & =5 \ln (\pi) e^{\ln (\pi)(5 x-2)} \\
& =5 \ln (\pi) \pi^{5 x-2} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =(2 x+1)\left(4 x^{2}\right) \sqrt{x-9} \\
\ln (y) & =\ln (2 x+1)+\ln (4)+2 \ln (x)+\frac{1}{2} \ln (x-9) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{1}{2 x+1}+\frac{2}{x}+\frac{1}{2(x-9)} \\
\therefore \frac{d y}{d x} & =8 x^{2} \sqrt{x-9}+8 x(2 x+1) \sqrt{x-9}+\frac{(2 x+1)\left(2 x^{2}\right)}{\sqrt{x-9}} .
\end{aligned}
$$

Ofcourse, we could have just as easily have gotten this from the product rule.

* Question 6. Prove the formula $\log _{a}(b) \log _{b}(a)=1$ for all positive numbers a, b with $a \neq 1$ and $b \neq 1$.

Solution to Question 6.
Since $a \neq 1$ and $b \neq 1$, neither $\log _{a}(b)$ or $\log _{b}(a)$ are zero. Hence,

$$
\log _{a}(b) \log _{b}(a)=\log _{b}\left(a^{\log _{b}(a)}\right)=\log _{b}(b)=1 .
$$

* Question 7. Let f be a differentiable function with inverse g such that $f(x)=f^{\prime}(x)$. Show that $g^{\prime}(x)=x^{-1}$.

Solution to Question 7.
We have that

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{f^{\prime}(g(x))} \text { when } f^{\prime}(g(x)) \neq 0 \\
& =\frac{1}{f(g(x))} \text { since } f=f^{\prime} \\
& =\frac{1}{x} \text { since } g \text { inverse to } f .
\end{aligned}
$$

Note that $f^{\prime}(g(x))=0 \Longleftrightarrow f(g(x))=0 \Longleftrightarrow x=0$. Hence the above formula works for all $x \neq 0$.

