Math 31B: Week 2 Section

TA: Ben Szczesny

Information

My office hours are now: 2 pm on Tue and 4 pm on Thur.

Discussion Questions

Question 1. Solve the following equations:
(a) $7^{\log _{7}(21 x)}=3$
(c) $7 e^{5 t}=100$
(b) $\ln \left(x^{2}+4\right)=2 \ln (x)+\ln (2)$
(d) $\log _{3}(y)+3 \log \left(y^{2}\right)=14$

Question 2. find a domain on which f is one-to-one and a formula for the inverse of f restricted to this domain. Sketch the graphs of f and f^{-1}.
(a) $f(x)=\frac{1}{x+1}$
(b) $f(x)=\frac{1}{\sqrt{x^{2}+1}}$

Question 3. We have from lectures that if g is the inverse for a differentiable and one-to-one function f, then for x with $x \neq 0$,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

(a) Let $f(x)=x^{3}+1$ and g it's inverse. Find a formula for $g(x)$ and calculate g^{\prime} in two ways. The first by differentiating g, and the second way by applying the above theorem.
(b) Let $f(x)=x^{3}+2 x+4$ and g it's inverse. Without finding a formula for $g(x)$ (no seriously, don't even try) calculate $g(7)$ and then $g^{\prime}(7)$.

Question 4. Calculate the following derivatives
(a) $y=\ln \left(x^{2} 6^{x}\right)$
(c) $y=8^{\cos (x)}$
(b) $y=\ln \left(\frac{x+1}{x^{3}+1}\right)$
(d) $y=x^{e^{x}}$

Homework Questions

Section 7.2
$16,18,20,22,26,32,36$

Section 7.3
$30,34,38,46,48,76,80$

Extra Questions

Question 5. Differentiate the following:
(a) $y=\frac{x\left(x^{2}+1\right)}{\sqrt{x+1}}$
(c) $y=\pi^{5 x-2}$
(b) $y=x^{3^{x}}$
(d) $y=(2 x+1)\left(4 x^{2}\right) \sqrt{x-9}$

* Question 6. Prove the formula $\log _{a}(b) \log _{b}(a)=1$ for all positive numbers a, b with $a \neq 1$ and $b \neq 1$.
* Question 7. Let f be a differentiable function with inverse g such that $f(x)=f^{\prime}(x)$. Show that $g^{\prime}(x)=x^{-1}$.

