Math 31B: Week 10 Section

TA: Ben Szczesny

Discussion Questions

Question 1. Find the interval of convergence for the following
(a) $\sum_{n=2}^{\infty} \frac{x^{n}}{\ln (n)}$
(b) $\sum_{n=1}^{\infty} n(x-3)^{n}$

Solution to Question 1.
(a) Using the ratio test we find that $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\left|\frac{x^{n+1}}{\ln (n+1)}\right| \cdot\left|\frac{\ln (n)}{x^{n}}\right| \rightarrow|x|$. Hence the power series converges absolutely for $|x|<1$. Now we check the end points.
When $x=1$, we compare with the harmonic series to see that it divereges. When $x=-1$ we can apply the alternating series test and we see that it converges. Hence the series converges on the interval $[-1,1)$.
(b) Using the ratio test we see that

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{n+1}{n}|x-3| \rightarrow|x-3| \text { as } n \rightarrow \infty
$$

Hence the series converges absolutely for $|x-3|<1$. We now check the end points. When $x= \pm 4$, this diverges by the n-th term divergence test. Hence we see that the interval of convergence is $(2,4)$.

Question 2. We have that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { for }|x|<1
$$

Use this and the equality $\frac{1}{1-x}=\frac{-1}{1+(x-2)}$ to show that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty}(-1)^{n+1}(x-2)^{n} \text { for }|x-2|<1
$$

Solution to Question 2.
We have that

$$
\begin{aligned}
\frac{1}{1-x} & =\frac{-1}{1+(x-2)} \\
& =-\sum_{n=0}^{\infty}(-(x-2))^{n} \text { for }|x-2|<1 \\
& =-\sum_{n=0}^{\infty}(-1)^{n}(x-2)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n+1}(x-2)^{n}
\end{aligned}
$$

Question 3. Find The following Maclaurin series and the interval the expansion is valid by using previously known series.
(a) $f(x)=\frac{1-\cos (x)}{x}$
(b) $f(x)=\left(x^{2}+1\right) \sin (x)$

Solution to Question 3.
(a) We know that $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ for all x. Hence it follows for all x that

$$
\begin{aligned}
\frac{1-\cos (x)}{x} & =\frac{1-\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}}{x} \\
& =\frac{\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}}{x} \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n)!}
\end{aligned}
$$

(b) Similarly, we know that $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x. Hence we have that

$$
\begin{aligned}
\left(x^{2}+1\right) \sin (x) & =\left(x^{2}+1\right) \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =x^{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =x+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}+\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& =x+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!}+\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n+3}}{(2 n+3)!} \\
& =x+\sum_{n=0}^{\infty}\left(1-\frac{1}{(2 n+3)(2 n+2)}\right)(-1)^{n} \frac{x^{2 n+3}}{(2 n+1)!} \\
& =x+\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(4 n^{2}+10 n+5\right) x^{2 n+3}}{(2 n+3)!}
\end{aligned}
$$

Question 4. Show that

$$
\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\cdots
$$

converges to zero. How many terms must be computed to get within 0.01 of zero?

Solution to Question 4.

We have that $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x and so we see this series converges to $\sin (\pi)=0$. Power
series coincide with their taylor expansion and so we can use the error estimate for the taylor polynomial of $\sin (x)$ around $x=0$ to understand how many terms we need to compute the series to get it within 0.01 of zero. i.e, the first N terms of the series are exactly $T_{2 N-1}(\pi)$.
We find that

$$
\left|\sin (\pi)-T_{2 N-1}(\pi)\right| \leq \max _{x \in[0, \pi]} \frac{\left|\sin ^{(2 N)}(x)\right| \pi^{2 N}}{(2 N)!} \leq \frac{\pi^{2 N}}{(2 N)!}
$$

We want this less than 10^{2} and so we see that $N=10$ is enough after putting this into a calculator.

