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Discussion Questions

Question 1. Find the interval of convergence for the following

) 3
nz_:? In(n)

(b) > n(z—3)"

Solution to Question 1.
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(a) Using the ratio test we find that |C|LZ:|1| = lnzcn "y

absolutely for |x| < 1. Now we check the end points.
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— |z|. Hence the power series converges

When z = 1, we compare with the harmonic series to see that it divereges. When z = —1 we can apply
the alternating series test and we see that it converges. Hence the series converges on the interval [—1, 1).

(b) Using the ratio test we see that
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Hence the series converges absolutely for |z — 3| < 1. We now check the end points. When z = 44, this
diverges by the n-th term divergence test. Hence we see that the interval of convergence is (2,4).

Question 2. We have that

1 >~ .
— = Zw’ for |z| < 1.
1—x =
. . 1 -1
Use this and the equality = to show that
l—2z 14+ (z-2)
1 o0
— = > (1)@ —2)" for |z - 2| < 1.
-z
n=0
Solution to Question 2.
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Question 3. Find The following Maclaurin series and the interval the expansion is valid by using previously

known series.
1 —cos(x)
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(b) f(2) = (® + 1) sin(x)

Solution to Question 3.
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(a) We know that cos(z) = Z(fl)” @n) for all z. Hence it follows for all x that
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(b) Similarly, we know that sin(z) = Z(fl)"m for all z. Hence we have that
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Question 4. Show that
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converges to zero. How many terms must be computed to get within 0.01 of zero?

Solution to Question 4.
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We have that sin(z) = Z(—l)"

@ns 1) for all z and so we see this series converges to sin(r) = 0. Power
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series coincide with their taylor expansion and so we can use the error estimate for the taylor polynomial of
sin(z) around = = 0 to understand how many terms we need to compute the series to get it within 0.01 of
zero. 1i.e, the first N terms of the series are exactly Ton_1 (7).

We find that

, |sin®N) (g)|72N p2N
—Ton_ <
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We want this less than 102 and so we see that N = 10 is enough after putting this into a calculator.



