Math 31B: Week 10 Section

TA: Ben Szczesny

Discussion Questions

Question 1. Find the interval of convergence for the following
(a) $\sum_{n=2}^{\infty} \frac{x^{n}}{\ln (n)}$
(b) $\sum_{n=1}^{\infty} n(x-3)^{n}$

Question 2. We have that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { for }|x|<1
$$

Use this and the equality $\frac{1}{1-x}=\frac{-1}{1+(x-2)}$ to show that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty}(-1)^{n+1}(x-2)^{n} \text { for }|x-2|<1
$$

Question 3. Find The following Maclaurin series and the interval the expansion is valid by using previously known series.
(a) $f(x)=\frac{1-\cos (x)}{x}$
(b) $f(x)=\left(x^{2}+1\right) \sin (x)$

Question 4. Show that

$$
\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\cdots
$$

converges to zero. How many terms must be computed to get within 0.01 of zero?

