Math 31B: Mock Midterm 2

TA: Ben Szczesny
Last updated: 2018/02/21

Time: 40 minutes. Note, this practice midterm is shorter than the other practice midterm to reflect the shorter time. In particular, question 3 is significantly shorter.

Question 1.

(a) Compute S_{6} for the integral $\int_{0}^{1} x d x$.
(b) The error bound for the trapezoidal rule approximation to $\int_{a}^{b} f(x) d x$ is given by

$$
\left|\int_{a}^{b} f(x) d x-T_{N}\right| \leq \max _{x \in[a, b]} \frac{\left|f^{\prime \prime}(x)\right||b-a|^{3}}{12 N^{2}}
$$

If $f(x)=e^{-x}$ and $[a, b]=[0,3]$, what should N be if the right hand side of the error bound is to be less than or equal 10^{-6} ?

Solution to Question 1.

(a) By the formula we have that

$$
\begin{aligned}
S_{6} & =\frac{1}{3} \frac{1}{6}\left(0+1+2\left(\frac{2}{6}+\frac{4}{6}\right)+4\left(\frac{1}{6}+\frac{3}{6}+\frac{5}{6}\right)\right) \\
& =\frac{1}{2}
\end{aligned}
$$

(b) We have that $\max _{x \in[0,3]}\left|f^{\prime \prime}(x)\right|=1$ since the exponential is decreasing. Hence by the above formula, we want N such that

$$
\frac{3^{3}}{12 N^{2}} \leq 10^{-6} \Longrightarrow N \geq \frac{3}{2} \times 10^{3}=1500
$$

Question 2.

(a) Calculate the arclength of $y=9-3 x$ over the interval $[1,3]$.
(b) Calculate the surface of revolution around the x-axis of $y=\sin (x)$ over the interval $[0, \pi]$. You may use

$$
\int \sqrt{1+u^{2}} d u=\frac{u}{2} \sqrt{1+u^{2}}+\frac{1}{2} \ln \left(u+\sqrt{1+u^{2}}\right)+C .
$$

Solution to Question 2.
(a) We have $\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{10}$. Hence we have that

$$
\text { Arclength }=\int_{1}^{3} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=2 \sqrt{10}
$$

(b) We have that

$$
\begin{aligned}
\text { Surface area } & =2 \pi \int_{0}^{\pi} \sin (x) \sqrt{1+\cos ^{2}(x)} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{1+u^{2}} d u \text { after substitution } u=\cos (x) \\
& =2 \pi\left(\sqrt{2}+\frac{1}{2} \ln (1+\sqrt{2})-\frac{1}{2} \ln (-1+\sqrt{2})\right) \\
& =2 \pi(\sqrt{2}+\ln (\sqrt{2}+1)) .
\end{aligned}
$$

Question 3.

(a) Calculate the third Maclaurin polynomial of $\arcsin (x)$.

Solution to Question 3.

(a) You should get

$$
T_{3}(x)=x+\frac{1}{6} x^{3}
$$

Question 4.

(a) Evaluate $\int_{\infty}^{\infty} \frac{1}{x^{2}+1} d x$.
(b) Use the comparison test to prove that $\int_{1}^{\infty} \frac{d x}{x^{2}+\sinh (x)}$ converges.

Solution to Question 4.
(a) We have that

$$
\begin{aligned}
\int_{\infty}^{\infty} \frac{1}{x^{2}+1} d x & =\int_{0}^{\infty} \frac{1}{x^{2}+1} d x+\int_{-\infty}^{0} \frac{1}{x^{2}+1} d x \\
& =\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{1}{x^{2}+1} d x+\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{1}{x^{2}+1} d x \\
& =\lim _{a \rightarrow \infty} \arctan (a)-\lim _{a \rightarrow-\infty} \arctan (a) \\
& =\pi
\end{aligned}
$$

(b) Since $\sinh (x)>0$ for $x \geq 1$, we have that

$$
0 \leq \frac{1}{x^{2}+\sinh (x)} \leq \frac{1}{x^{2}}
$$

Since $\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges as it's a p-integral, by the comparison test we have that $\int_{1}^{\infty} \frac{d x}{x^{2}+\sinh (x)}$
converges.

