Math 31B: Final Practice Quiz

TA: Ben Szczesny

Time: 50 minutes. This tests sections 11.1-11.7 of textbook
Question 1.
(a) Let $a_{n}=\left(n+10^{n}\right)^{1 / n}$. Use the squeeze theorem to show that $\lim _{n \rightarrow \infty} a_{n}=10$.
(b) What is the limit of $a_{n}=\ln \left(n^{2}+1\right)-\ln \left(n^{2}-1\right)$ as $n \rightarrow \infty$?

Question 2. For each of the following series, determine whether they diverge, converge conditionally or absolutely converge. Justify your answer.
(a) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} n^{2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\ln (n)}$
(d) $\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{\ln (n)}$
(e) $\sum_{n=1}^{\infty} \frac{\sin (1 / n)}{\sqrt{n}}$

Question 3. Find the interval of convergence for the following power series
(a) $\sum_{n=15}^{\infty} \frac{x^{2 n+1}}{3 n+1}$
(b) $\sum_{n=1}^{\infty} e^{n}(x-2)^{n}$

Question 4. Show, by integrating the Maclaurin series for $f(x)=\frac{1}{\sqrt{1-x^{2}}}$ that for $|x|<1$,

$$
\sin ^{-1}(x)=x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} \frac{x^{2 n+1}}{2 n+1}
$$

