Math 31B: Final Practice Quiz

TA: Ben Szczesny

Last updated: 2018/03/18

Time: 50 minutes. This tests sections 11.1-11.7 of textbook

Question 1.

- (a) Let $a_n = (n+10^n)^{1/n}$. Use the squeeze theorem to show that $\lim_{n\to\infty} a_n = 10$.
- (b) What is the limit of $a_n = \ln(n^2 + 1) \ln(n^2 1)$ as $n \to \infty$?

Question 2. For each of the following series, determine whether they diverge, converge conditionally or absolutely converge. Justify your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{e^n}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n n^2$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \ln(n)}$$

(d)
$$\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\ln(n)}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$$

Question 3. Find the interval of convergence for the following power series

(a)
$$\sum_{n=15}^{\infty} \frac{x^{2n+1}}{3n+1}$$

(b) $\sum_{n=1}^{\infty} e^n (x-2)^n$

Question 4. Show, by integrating the Maclaurin series for $f(x) = \frac{1}{\sqrt{1-x^2}}$ that for |x| < 1,

$$\sin^{-1}(x) = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \frac{x^{2n+1}}{2n+1}.$$