MATH 31B: Week 6 Discussion

TA: Ben Szczesny
Last updated: 2018/05/14

Question 1. Determine whether the following improper integrals converge or diverge. If they converge, what do they converge to?
(a) $\int_{1}^{\infty} x^{3} d x$
(b) $\int_{0}^{2} x^{2} d x$
(c) $\int_{1}^{2} \frac{1}{x \ln (x)} d x$

Solution to Question 1.
(a)

$$
\begin{aligned}
\int_{1}^{\infty} x^{3} d x & =\lim _{R \rightarrow \infty} \int_{1}^{R} x^{3} d x \\
& =\left.\lim _{R \rightarrow \infty} \frac{x^{4}}{4}\right|_{1} ^{R} \\
& =\lim _{R \rightarrow \infty} \frac{R^{4}}{4}-\frac{1}{4} \\
& =\infty
\end{aligned}
$$

Hence this diverges
(b)

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & =\lim _{r \rightarrow 0} \int_{r}^{2} x^{2} d x \\
& =\left.\lim _{r \rightarrow 0} \frac{x^{3}}{3}\right|_{r} ^{2} \\
& =\lim _{r \rightarrow 0} \frac{8}{3}-\frac{r^{3}}{3} \\
& =\frac{8}{3}
\end{aligned}
$$

Hence converges to $8 / 3$.
(c)

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x \ln (x)} d x & =\lim _{r \rightarrow 1} \int_{r}^{2} \frac{1}{x \ln (x)} d x \\
& =\left.\lim _{r \rightarrow 1} \ln (\ln (x))\right|_{r} ^{2} \\
& =\lim _{r \rightarrow 0} \ln (\ln (2))-\ln (\ln (r)) \\
& =\infty
\end{aligned}
$$

Hence this diverges.

Question 2. Use the comparison test to determine whether the following integrals converge or diverge.
(a) $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{4}+3}}$
(b) $\int_{0}^{1} \frac{d x}{x^{4}+\sqrt{x}}$

Solution to Question 2.
(a) We have the inequality $\sqrt{x^{4}+3}>\sqrt{x^{4}}=x^{2}$ for $x>1$. Hence $0 \leq \frac{1}{\sqrt{x^{4}+3}} \leq \frac{1}{x_{2}}$. Since $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges (either by above method or as a p-integral), the comparison test implies that $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{4}+3}}$ converges.
(b) We have the inequality $x^{4}+\sqrt{x} \geq \sqrt{x}$ for $x \in[0,1]$. Hence $0 \leq \frac{1}{x^{4}+\sqrt{x}} \leq \frac{1}{\sqrt{x}}$. Since $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ converges (either by above method or as a p-integral), the comparison test implies that $\int_{0}^{1} \frac{d x}{x^{4}+\sqrt{x}}$ converges.

Question 3. Compute the arclength of $y=\left(\frac{x}{2}\right)^{4}+\frac{1}{2 x^{2}}$ over the interval $[1,4]$.
Solution to Question 3.
We have that $y^{\prime}=\frac{x^{3}}{4}-\frac{1}{x^{3}}$ and so

$$
\begin{aligned}
1+\left(y^{\prime}\right)^{2} & =1+\left(\frac{x^{3}}{4}-\frac{1}{x^{3}}\right)^{2} \\
& =1+\frac{x^{6}}{16}-\frac{1}{2}+\frac{1}{x^{6}} \\
& =\frac{x^{6}}{16}+\frac{1}{2}+\frac{1}{x^{6}} \\
& =\left(\frac{x^{3}}{4}+\frac{1}{x^{3}}\right)^{2}
\end{aligned}
$$

Hence arclength is given by

$$
\begin{aligned}
\text { Arclength } & =\int_{1}^{4} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{1}^{4} \frac{x^{3}}{4}+\frac{1}{x^{3}} d x \\
& =\frac{509}{32}
\end{aligned}
$$

Question 4. (More Challenging) Compute the arc length of $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right)$ over the interval $[1,3]$.

Solution to Question 4.
We have the following:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-2 e^{x}}{e^{2 x}-1} \\
\left(\frac{d y}{d x}\right)^{2} & =\frac{4 e^{2 x}}{\left(e^{2 x}-1\right)^{2}} \\
1+\left(\frac{d y}{d x}\right)^{2} & =\frac{\left(e^{2 x}+1\right)^{2}}{\left(e^{2 x}-1\right)^{2}} \\
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} & =\frac{e^{2 x}+1}{e^{2 x}-1} \\
& =\operatorname{coth}(x) \text { for } x \geq 0
\end{aligned}
$$

Hence we have that

$$
\text { Arclength }=\int_{1}^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{3} \operatorname{coth}(x) d x=\ln (\sinh (3))-\ln (\sinh (1))
$$

