MATH31B: Week 5

TA: Ben Szczesny

Question 1. Write the following in summation notation
(a) $\frac{1}{2 \cdot 3}+\frac{2}{3.4}+\cdots+\frac{n}{(n+1)(n+2)}$
(b) $3 x^{2}+4 x^{3}+\cdots 30 x^{29}$
(c) $7 x^{6}+9 x^{8}+11 x^{10}+\cdots 31 x^{30}$

Question 2. Find the $2 n$-th degree Taylor polynomial of $\cos (x)$ around the point $a=0$ and write it in summation notation.

Question 3. For the following functions f, find a value K such that for the given n and interval, $\left|f^{(n)}(x)\right| \leq$ K for all x in that interval.
(a) $f(x)=x^{4}, n=3$ on $[0,1]$
(b) $f(x)=\frac{1}{x}, n=4$ on $[1,2]$
(c) $f(x)=\cos (x)$ for all n and all $x \in \mathbb{R}$.

Question 4. Use the error bound for the Taylor polynomial to find error bounds for the following:
(a) $\left|f(0.1)-T_{7}(0.1)\right|$ where $f(x)=e^{x}$ and T_{7} is centred at $a=0$.
(b) $\left|f(4.3)-T_{3}(4.3)\right|$ where $f(x)=x^{-1 / 2}$ and T_{3} is centred at $a=4$.

Question 5. Use the error bound for the taylor polynomial to find a value for n such that $\mid \cos (0.1)-$ $T_{n}(0.1) \mid \leq 10^{-7}$ holds. Here T_{n} is centred at $a=0$.

Question 6. Evaluate $\int \frac{18}{(x+1)\left(x^{2}+9\right)} d x$.

