MATH31B: Week 5

TA: Ben Szczesny

Question 1. Write the following in summation notation

(a)
$$\frac{1}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \dots + \frac{n}{(n+1)(n+2)}$$

- (b) $3x^2 + 4x^3 + \dots 30x^{29}$
- (c) $7x^6 + 9x^8 + 11x^{10} + \dots 31x^{30}$

Question 2. Find the 2*n*-th degree Taylor polynomial of cos(x) around the point a = 0 and write it in summation notation.

Question 3. For the following functions f, find a value K such that for the given n and interval, $|f^{(n)}(x)| \leq K$ for all x in that interval.

(a)
$$f(x) = x^4$$
, $n = 3$ on $[0, 1]$

- (b) $f(x) = \frac{1}{x}$, n = 4 on [1, 2]
- (c) $f(x) = \cos(x)$ for all n and all $x \in \mathbb{R}$.

Question 4. Use the error bound for the Taylor polynomial to find error bounds for the following:

- (a) $|f(0.1) T_7(0.1)|$ where $f(x) = e^x$ and T_7 is centred at a = 0.
- (b) $|f(4.3) T_3(4.3)|$ where $f(x) = x^{-1/2}$ and T_3 is centred at a = 4.

Question 5. Use the error bound for the taylor polynomial to find a value for n such that $|\cos(0.1) - T_n(0.1)| \le 10^{-7}$ holds. Here T_n is centred at a = 0.

Question 6. Evaluate $\int \frac{18}{(x+1)(x^2+9)} dx$.