MATH31B: Week 3 Mock Midterm

TA: Ben Szczesny

Last updated: 2018/04/16

Question 1. Show that $f(x)=\frac{1}{x^{2}+1}$ is one-to-one on $(-\infty, 0]$ and find a formula for f^{-1} for this domain of f.

Solution to Question 1.
Differentiating gives $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}>0$ for $x \in(-\infty, 0)$. Hence we conclude f is strictly increasing on $(-\infty, 0]$ and hence one-to-one.
Now, let $y=f(x)$. Solving for x gives

$$
\begin{aligned}
y & =\frac{1}{x^{2}+1} \\
\frac{1}{y} & =x^{2}+1 \\
\frac{1}{y}-1 & =x^{2} \\
\therefore x & =-\sqrt{\frac{1}{y}-1 .}
\end{aligned}
$$

Note that we take the negative root as $x \in(-\infty, 0]$. Hence we find the inverse (after swapping x and y) to be

$$
f^{-1}(x)=-\sqrt{\frac{1}{x}-1}
$$

Question 2. Given that $1-\tanh ^{2}(x)=\operatorname{sech}^{2}(t)$, prove that $\frac{d}{d x} \tanh ^{-1}(x)=\frac{1}{1-x^{2}}$.

Solution to Question 2.
Let $f(x)=\tanh (x)$. Then we have that $f^{\prime}(x)=\operatorname{sech}^{2}(x)$ and by the derivative of the inverse formula, we get that

$$
\frac{d}{d x} \tanh ^{-1}(x)=\frac{1}{\operatorname{sech}^{2}\left(\tanh ^{-1}(x)\right)}=\frac{1}{1-\tanh ^{2}\left(\tanh ^{-1}(x)\right)}=\frac{1}{1-x^{2}}
$$

since they are inverses.
Question 3. Evaluate $\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2}$.

Solution to Question 3.
Substituting $x=2$ gives us $0 / 0$, an indeterminant form. Hence L'hopitals applies. We then have

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{e^{x^{2}}-e^{4}}{x-2} & =\lim _{x \rightarrow 2} \frac{2 x e^{x^{2}}}{1} \\
& =4 e^{4}
\end{aligned}
$$

Question 4. Differentiate
(a) $y=(2 x+1)\left(4 x^{2}\right) \sqrt{x-9}$
(b) $y=\ln (\arcsin (x))$

Solution to Question 4.
(a) We have

$$
\ln (y)=\ln (2 x+1)+\ln (4)+2 \ln (x)+\frac{1}{2} \ln (x-9)
$$

Differentiating yields

$$
\frac{y^{\prime}}{y}=\frac{2}{2 x+1}+\frac{2}{x}+\frac{1}{2(x-9)}
$$

Hence

$$
y^{\prime}=(2 x+1)\left(4 x^{2}\right) \sqrt{x-9}\left(\frac{2}{2 x+1}+\frac{2}{x}+\frac{1}{2(x-9)}\right)
$$

(b) By the chain rule, we have that

$$
\frac{d y}{d x}=\frac{1}{\arcsin (x) \sqrt{1-x^{2}}}
$$

Question 5. Evaluate the following integrals
(a) $\int \frac{d x}{\sqrt{1-16 x^{2}}}$
(b) $\int 3^{x} d x$
(c) $\int e^{x} \cos (x) d x$

Solution to Question 5.
(a) let $u=4 x$, so $d u=4 d x$. Hence

$$
\int \frac{d x}{\sqrt{1-16 x^{2}}}=\frac{1}{4} \int \frac{d u}{\sqrt{1-u^{2}}}=\frac{1}{4} \arcsin (u)+C=\frac{1}{4} \arcsin (4 x)+C
$$

(b) We have

$$
\int 3^{x} d x=\int e^{\ln (3) x} d x=\frac{e^{\ln (3) x}}{\ln (3)}+C=\frac{3^{x}}{\ln (3)}+C
$$

(c) Let $I=\int e^{x} \cos (x) d x$. Doing integration by parts twice, we get that

$$
\begin{aligned}
I & =\int e^{x} \cos (x) d x \\
& =e^{x} \cos (x)+\int e^{x} \sin (x) d x \\
& =e^{x} \cos (x)+e^{x} \sin (x)-\int e^{x} \cos (x) d x \\
& =e^{x}(\cos (x)+\sin (x))-I
\end{aligned}
$$

Rearranging gives $I=\frac{e^{x}}{2}(\cos (x)+\sin (x))+C$.

