MATH31B: Week 2 discussion

TA: Ben Szczesny
Last updated: 2018/04/09

Discussion Questions

Question 1. Let $f(x)=x+\cos (x)$ and $g(x)$ it's inverse. Calculate $g(1)$ and $g^{\prime}(1)$.

Solution to Question 1.
Let $b=g(1)$, this is a number such that $f(b)=1$ since it's an inverse. i.e,

$$
b+\cos (b)=1
$$

By inspection, we find that $b=0$ and so $g(1)=0$. Now, we will use the formula for the derivative of the inverse to find $g^{\prime}(1)$. We first differentiate $f, f^{\prime}(x)=1-\sin (x)$. Hence we have

$$
\begin{aligned}
g^{\prime}(1) & =\frac{1}{f^{\prime}(g(1))} \\
& =\frac{1}{f^{\prime}(0)} \\
& =1
\end{aligned}
$$

Question 2. Calculate $\int \frac{\cos (x)}{2 \sin (x)+3} d x$. Hint: u-substitution.

Solution to Question 2.

$$
\begin{aligned}
\iint \frac{\cos (x)}{2 \sin (x)+3} d x & =\int \frac{1}{2 u+3} d u \text { after } u=\sin (x) \\
& =\frac{1}{2} \ln |2 u+3|+C \\
& =\frac{1}{2} \ln |2 \sin (x)+3|+C
\end{aligned}
$$

Question 3. Find the derivative of $f(x)=\frac{x\left(x^{2}+1\right)}{\sqrt{x+1}}$.

Solution to Question 3.
We have that

$$
\ln (f(x))=\ln (x)+\ln \left(x^{2}+1\right)-\frac{1}{2} \ln (x+1)
$$

Differentiating gives us

$$
\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x}+\frac{2 x}{x^{2}+1}-\frac{1}{2(x+1)}
$$

Hence

$$
f^{\prime}(x)=\frac{x\left(x^{2}+1\right)}{\sqrt{x+1}}\left(\frac{1}{x}+\frac{2 x}{x^{2}+1}-\frac{1}{2(x+1)}\right)
$$

Extra Questions

Question 4. Let $f(x)=x^{3}+2 x+4$ and g it's inverse. Without finding a formula for $g(x)$ (no seriously, don't even try) calculate $g(7)$ and then $g^{\prime}(7)$.

Solution to Question 4.
$g(7)=b$ where b is the number such that $f(b)=7$. i.e, $b^{3}+2 b+4=7$ and so $b=1$ by inspection. Now, by the derivative of the inverse formula we have that

$$
g^{\prime}(7)=\frac{1}{f^{\prime}(g(7))}=\frac{1}{f^{\prime}(1)}=\frac{1}{5}
$$

Question 5. Calculate the following derivatives
(a) $y=\ln \left(x^{2} 6^{x}\right)$
(c) $y=8^{\cos (x)}$
(b) $y=\ln \left(\frac{x+1}{x^{3}+1}\right)$
(d) $y=x^{e^{x}}$

Solution to Question 5.
(a)

$$
\begin{aligned}
y & =\ln \left(x^{2} 6^{x}\right) \\
y & =2 \ln (x)+x \ln (6) \\
\frac{d y}{d x} & =\frac{2}{x}+\ln (6) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\ln \left(\frac{x+1}{x^{3}+1}\right) \\
y & =\ln (x+1)-\ln \left(x^{3}+1\right) \\
\frac{d y}{d x} & =\frac{1}{x+1}-\frac{3 x^{2}}{x^{3}+1} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =8^{\cos (x)} \\
y & =e^{\ln (8) \cos (x)} \\
\frac{d y}{d x} & =-\ln (8) \sin (x) e^{\ln (8) \cos (x)} \\
& =-\ln (8) \sin (x) 8^{\cos (x)} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
y & =x^{e^{x}} \\
y & =e^{\ln (x) e^{x}} \\
\frac{d y}{d x} & =\frac{d}{d x}\left(\ln (x) e^{x}\right) \cdot e^{\ln (x) e^{x}} \\
& =\left(\frac{e^{x}}{x}+\ln (x) e^{x}\right) \cdot x^{e^{x}}
\end{aligned}
$$

Question 6. Prove that $\frac{d}{d x}(\arcsin (x))=\frac{1}{\sqrt{1-x^{2}}}$. Remember that $\arcsin (x)$ is the inverse of sin after restricting the domain to $[-\pi / 2, \pi / 2]$.

Solution to Question 6.
Let $y=\arcsin (x)$. Then $\sin (y)=x$ and differentiating gives us that

$$
\cos (y) \frac{d y}{d x}=1
$$

Note that by Pythagoras we have that $\cos (y)=\sqrt{1-\sin ^{2}(y)}$ since we have restricted the domain so that $\cos (y)$ is positive. Hence altogether we have

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-\sin ^{2}(y)}}=\frac{1}{\sqrt{1-x^{2}}}
$$

