MATH31B: Week 10

Question 1. Find the interval of convergence for the following
(a) $\sum_{n=2}^{\infty} \frac{x^{n}}{\ln (n)}$
(b) $\sum_{n=1}^{\infty} n(x-3)^{n}$

Question 2. Expand the function $f(x)=\frac{1}{4+3 x}$ into a powerseries centered at $c=0$. What is the radius of convergence for this expansion?

Question 3. Using the previous question, find a power series representation of $g(x)=\frac{1}{(4+3 x)^{2}}$ centered at $c=0$. What is it's radius of convergence?

Question 4. Find The following Maclaurin series and the interval the expansion is valid by using previously known series.
(a) $f(x)=\frac{1-\cos (x)}{x}$
(b) $f(x)=\left(x^{2}+1\right) \sin (x)$

Question 5. Show that

$$
\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\cdots
$$

converges to zero. How many terms must be computed to get within 0.01 of zero?

