MATH31B: Week 3

TA: Ben Szczesny

Questions

Question 1. For the following functions f, find a value K such that for the given n and interval, $\left|f^{(n)}(x)\right| \leq$ K for all x in that interval.
(a) $f(x)=x^{4}, n=3$ on $[0,1]$
(b) $f(x)=\frac{1}{x}, n=4$ on $[1,2]$
(c) $f(x)=\cos (x)$ for all n and all $x \in \mathbb{R}$.

Question 2. Use the error bound for the Taylor polynomial to find error bounds for the following:
(a) $\left|f(0.1)-T_{7}(0.1)\right|$ where $f(x)=e^{x}$ and T_{7} is centred at $a=0$.
(b) $\left|f(4.3)-T_{2}(4.3)\right|$ where $f(x)=x^{-1 / 2}$ and T_{2} is centred at $a=4$.

Question 3. Use the error bound for the taylor polynomial to find a value for n such that $\mid \cos (0.1)-$ $T_{n}(0.1) \mid \leq 10^{-7}$ holds. Here T_{n} is centred at $a=0$.

Question 4. For the following, use partial fraction decomposition before integrating.
(a) $\int \frac{d x}{x(2 x+1)}$
(b) $\int \frac{d x}{x^{2}-1}$
(c) $\int \frac{8}{x(x+2)^{3}} d x$
(d) $\int \frac{x^{2}}{(x+1)\left(x^{2}+1\right)} d x$

Homework

9.4.25, 9.4.32, 9.4.37, 8.5.7, 8.5.15, 8.5.27

