MATH 31B: Week 2

TA: Ben Szczesny

Questions

Question 1. Compute without calculator:
(a) $\arcsin \left(\sin \frac{\pi}{3}\right)$
(c) $\arctan \left(\tan \frac{3 \pi}{4}\right)$
(b) $\arcsin \left(\sin \frac{4 \pi}{3}\right)$

Solution to Question 1.
(a) Since the range of \arcsin is $[\pi / 2, \pi / 2]$, we have that $\arcsin \left(\sin \frac{\pi}{3}\right)=\frac{\pi}{3}$.
(b) Since $\frac{4 \pi}{3}$ is not in the range of arcsin, we can not use the previous solution. We want to find a value $y \in[\pi / 2, \pi / 2]$ such that $\sin \left(\frac{4 \pi}{3}\right)=\sin (y)$, since this will then give us

$$
\arcsin \left(\sin \frac{4 \pi}{3}\right)=\arcsin (\sin y)=y
$$

In order to do this, we will use the identity $\sin (x)=\sin (\pi-x)$ (note, the general version of this identity is $\sin (x)=\sin \left((-1)^{n}(x-n \pi)\right), n \in \mathbb{Z}$ which can be used in the general case).
Now, we have that $\sin \left(\frac{4 \pi}{3}\right)=\sin \left(\pi-\frac{4 \pi}{3}\right)=\sin \left(-\frac{\pi}{3}\right)$ and as $-\frac{\pi}{3}$ is in the range of arcsin we have that

$$
\arcsin \left(\sin \frac{4 \pi}{3}\right)=\arcsin \left(\sin \frac{-\pi}{3}\right)=\frac{-\pi}{3}
$$

(c) Similarly to the previous question. $\frac{3 \pi}{4}$ is not in the range of \arctan. However, we do have that $\tan (x)$ is π periodic $(\tan (x)=\tan (x+n \pi)$ for all $n \in \mathbb{Z})$ and so

$$
\arctan \left(\tan \frac{3 \pi}{4}\right)=\arctan \left(\tan \left(\frac{3 \pi}{4}-\pi\right)\right)=\arctan \left(\tan \frac{-\pi}{4}\right)=\frac{-\pi}{4}
$$

Question 2. Compute without calculator:

1. $\cos (\arctan (x))$
2. $\cot \left(\sec ^{-1}(x)\right)$ for $x \geq 1$

Solution to Question 2.

1. We use a triangle method. We have the triangle

Hence, we have that $\cos (\arctan (x))=\frac{1}{\sqrt{x^{2}+1}}$.
2. The triangle method can be used also. Another method is by trig identity $\tan ^{2}(x)=\sec ^{2}(x)-1$.

$$
\begin{aligned}
\cot \left(\sec ^{-1}(x)\right) & =\frac{1}{\tan \left(\sec ^{-1}(x)\right)} \\
& =\frac{1}{ \pm \sqrt{\sec ^{2}\left(\sec ^{-1}(x)\right)-1}} \\
& =\frac{1}{ \pm \sqrt{x^{2}-1}}
\end{aligned}
$$

Note that since cot is positive between $[0, \pi / 2]$ we take the potiive root. $\cot \left(\sec ^{-1}(x)\right)=\frac{1}{\sqrt{x^{2}-1}}$

Question 3. Find the derivatives of the following functions:
(a) $\arcsin \left(e^{x}\right)$
(c) $\sec ^{-1}(t+1)$
(b) $\arccos (\ln (x))$
(d) $\tan ^{-1}\left(\frac{1+t}{1-t}\right)$.

Solution to Question 3.
(a) $\frac{e^{x}}{\sqrt{1-e^{2 x}}}$
(c) $\frac{1}{|t+1| \sqrt{(t+1)^{2}-1}}$
(b) $\frac{-1}{x \sqrt{\left.1-\ln ^{2}(x)\right)}}$
(d) $\frac{1}{1+t^{2}}$.

Question 4. Evaluate the following integrals:
(a) $\int \frac{d t}{\sqrt{1-16 t^{2}}}$
(c) $\int \frac{\ln \left(\cos ^{-1}(x)\right) d x}{\left(\cos ^{-1}(x)\right) \sqrt{1-x^{2}}}$.
(b) $\int \frac{d x}{x \sqrt{x^{4}-1}}$

Solution to Question 4.
(a) $\frac{1}{4} \arcsin (4 t)+C$. Use substitution $u=4 t$.
(c) $-(\ln (\arccos (x)))^{2}+C$. Use substitution $u=\arccos (x)$.
(b) $\frac{1}{2} \sec ^{-1}\left(x^{2}\right)+C$. Use substitution $u=x^{2}$.

Homework Questions

$7.8 .8,7.8 .57,7.8 .60,7.9 .55,9.4 .1,9.4 .15$

