MATH 31B: Week 2

TA: Ben Szczesny

Questions

Question 1. Compute without calculator:

- (a) $\arcsin(\sin\frac{\pi}{3})$
- (b) $\arcsin(\sin\frac{4\pi}{3})$

Solution to Question 1.

- (a) Since the range of arcsin is $[\pi/2, \pi/2]$, we have that $\arcsin(\sin \frac{\pi}{3}) = \frac{\pi}{3}$.
- (b) Since $\frac{4\pi}{3}$ is not in the range of arcsin, we can not use the previous solution. We want to find a value $y \in [\pi/2, \pi/2]$ such that $\sin(\frac{4\pi}{3}) = \sin(y)$, since this will then give us

$$\arcsin(\sin\frac{4\pi}{3}) = \arcsin(\sin y) = y$$

(c) $\arctan(\tan\frac{3\pi}{4})$

In order to do this, we will use the identity $\sin(x) = \sin(\pi - x)$ (note, the general version of this identity is $\sin(x) = \sin((-1)^n(x - n\pi))$, $n \in \mathbb{Z}$ which can be used in the general case).

Now, we have that $\sin(\frac{4\pi}{3}) = \sin(\pi - \frac{4\pi}{3}) = \sin(-\frac{\pi}{3})$ and as $-\frac{\pi}{3}$ is in the range of arcsin we have that

$$\arcsin(\sin\frac{4\pi}{3}) = \arcsin(\sin\frac{-\pi}{3}) = \frac{-\pi}{3}$$

(c) Similarly to the previous question. $\frac{3\pi}{4}$ is not in the range of arctan. However, we do have that $\tan(x)$ is π periodic $(\tan(x) = \tan(x + n\pi)$ for all $n \in \mathbb{Z}$) and so

$$\arctan(\tan\frac{3\pi}{4}) = \arctan(\tan(\frac{3\pi}{4} - \pi)) = \arctan(\tan\frac{-\pi}{4}) = \frac{-\pi}{4}$$

Question 2. Compute without calculator:

- 1. $\cos(\arctan(x))$
- 2. $\cot(\sec^{-1}(x))$ for $x \ge 1$

Solution to Question 2.

1. We use a triangle method. We have the triangle

Hence, we have that $\cos(\arctan(x)) = \frac{1}{\sqrt{x^2 + 1}}$.

2. The triangle method can be used also. Another method is by trig identity $\tan^2(x) = \sec^2(x) - 1$.

$$\cot(\sec^{-1}(x)) = \frac{1}{\tan(\sec^{-1}(x))}$$
$$= \frac{1}{\pm\sqrt{\sec^{2}(\sec^{-1}(x)) - 1}}$$
$$= \frac{1}{\pm\sqrt{x^{2} - 1}}$$

Note that since cot is positive between $[0, \pi/2]$ we take the potiive root. $\cot(\sec^{-1}(x)) = \frac{1}{\sqrt{x^2 - 1}}$

Question 3. Find the derivatives of the following functions:

(a) $\arcsin(e^x)$ (c) $\sec^{-1}(t+1)$ (b) $\arccos(\ln(x))$ (d) $\tan^{-1}\left(\frac{1+t}{1-t}\right)$.

Solution to Question 3.

(a)
$$\frac{e^x}{\sqrt{1-e^{2x}}}$$

(b) $\frac{-1}{x\sqrt{1-\ln^2(x))}}$
(c) $\frac{1}{|t+1|\sqrt{(t+1)^2-1}}$
(d) $\frac{1}{1+t^2}$

Question 4. Evaluate the following integrals:

(a)
$$\int \frac{dt}{\sqrt{1-16t^2}}$$
 (c) $\int \frac{\ln(\cos^{-1}(x))dx}{(\cos^{-1}(x))\sqrt{1-x^2}}$
(b) $\int \frac{dx}{x\sqrt{x^4-1}}$

Solution to Question 4.

(a)
$$\frac{1}{4} \operatorname{arcsin}(4t) + C$$
. Use substitution $u = 4t$.
(b) $\frac{1}{2} \sec^{-1}(x^2) + C$. Use substitution $u = x^2$.
(c) $-(\ln(\operatorname{arccos}(x)))^2 + C$.
Use substitution $u = \operatorname{arccos}(x)$.

Homework Questions

 $7.8.8,\, 7.8.57,\, 7.8.60,\, 7.9.55,\, 9.4.1,\, 9.4.15$